Tag Archives: major trauma

Open Chest Wounds. The Prehospital Management

3 Ago

Is the flutter valve beneficial? Is the chest seal itself beneficial? Or, does it convert a sucking chest wound into a life-threatening tension pneumothorax? “Why do we treat a non-lethal condition (open pneumothorax) with an intervention that may result in a lethal condition (tension pneumothorax)?” If the size of the chest seal defect is larger than the diameter of the trachea, then air will preferentially move through the chest defect which can be fatal. Many of the chest seals are being placed on small defects which could lead to a tension pneumothorax.

It is unknown whether modifying the current practice of treating an open pneumothorax with an occlusive chest dressing might cause some of these injuries to then result in fatalities.

Saving Lives on the Battlefield
A Joint Trauma System Review of Pre-Hospital Trauma Care in Combined Joint Operating Area – Afghanistan (CJOA-A)
FINAL REPORT
30 January 2013
U.S. Central Command Pre-Hospital Trauma Care Assessment Team

The current guidelines indicates commercial chest seals both vent or non vent as a valid option to treat open chest wounds. In any case if a commercial chest seal is not available the 3 sided closed dressing is no longer recommended and a total occlusive medication is the current indication.

Commercial chest seal VS improvised 3 sided chest dressing

A chest dressing closed on 3 sides was the traditional option of treatment. They are often difficult to adhere, ineffective and difficult to improvise in time-critical scenarios. New and recent guidelines recommended an occlusive medication with strict surveillance and in case of signs of tension pneumothorax the dressing must be removed. If the patients does not improve after removing the seal open thoracostomy is indicated.

There is no clear evidence to suggest that the use of one-way chest seals would reduce the incidence of respiratory complications in patients with penetrating chest wounds. However, these seals may be easier to use and should be considered as part of the medical kit for out-of-hospital settings.

BET 3: In a penetrating chest wound is a three-sided dressing or a one-way chest seal better at preventing respiratory complications?

BET 3: In a penetrating chest wound is a three-sided dressing or a one-way chest seal better at preventing respiratory complications?

Major trauma: assessment and initial management. 1.3 Management of chest trauma in pre‑hospital settings

Vent vs Non Vent Chest Seal

A vent commercial chest seal is the first line option in prehospital setting.

Both vented and unvented CSs provided immediate improvements in breathing and blood oxygenation in our model of penetrating thoracic trauma. However, in the presence of ongoing intrapleural air accumulation, the unvented CS led to tension PTx, hypoxemia, and possible respiratory arrest, while the vented CS prevented these outcomes.

Vented versus unvented chest seals for treatment of pneumothorax and prevention of tension pneumothorax in a swine model

Vented versus unvented chest seals for treatment of pneumothorax and prevention of tension pneumothorax in a swine model

Treatment of Thoracic Trauma: Lessons From the Battlefield Adapted to All Austere Environments

In case vent chest seal is not available use non vent chest seal and if the patients develops hypotension, hypoxia, respiratory distress, remove the seal or performa an open thoracostomy.

So what to do?

First get an airway and put the lung on positive pressure ventilation (Volume or Pressure Targeted Ventilation) :

Positive pressure in the chest during the entire respiratory cycle and avoiding negative pressure during inspiration decreases the risk of tension pneumothorax

If you have the patient on a spinal board with a cervical collar the larynx is narrowed and when the patient is in spontaneous breathing the air preferentially enters from the chest wound. Placing an OT and positive pressure ventilation avoids this mechanism and prevents tension in the thorax.

Positive pressure ventilation re-inflates the collapsed lung and improve oxygenation (PEEP) and ventilation (Minute Ventilation).

Second close the wound with

Vent chest seal as first option

Non vent chest seal if vent is not available

Non commercial chest dressing closed on 3 sides is your last resort

2016 NICE Major Trauma Guidelines. The pre-hospital recommendations.

21 Feb

NICE released the 2016 Major trauma Guidelines.

Many interesting recommendations where made for pre-hospital and in hospital providers about several topics

  • Airway management

  • Chest trauma

  • Haemorrage control

  • Circulatory access

  • Volume resuscitation

  • Fluid replacement

  • Pain management

  • Documentation

  • Training

Here is the Excerpt regarding the pre-hospital settings

Download the full guidelines for in-hospital recommendations and full description of Guidelines process and rationale behind every single recommendation

Download the full Guidelines at:

Major trauma: assessment and initial management

NICE guidelines [NG39] Published date: February 2016

Logo MEDEST2

 

Trauma induced coagulopathy. Fixed Ratio or Goal Directed Therapy?

3 Mar

Trauma induced coagulopathy (TIC) is now recognized as one of the major contributors to mortality in bad injured patients.
Its pathophysiological pathways is debated and still not well known, but seem to be clear, and widely accepted, that the profibrinolytic state, triggered from many and different factors involved in trauma, leads to an acute Fibrinogen consumption.
Thrombin and Coagulation Factors in fact seems to be preserved and well functioning even in bad traumatized patients.
This lack of Fibrinogen, at least in the early phase of trauma, is the real cause of coagulopathy and has to be early recognized and treated to revert the altered coagulation asset existing in a great part of traumatic patients.

Coagulopathy pat

The substitution of massively deteriorated Fibrinogen is the therapy of choice in patients with acute TIC.
Two ways of achieving this goal are recently shown to be feasible, and from different point of view, effective.
The first is the Fibrinogen replacement with PRBC, FFP and PLT with a fixed ratio (1:1:1 or 1:1:2).
The second is a Goal Directed Therapy (GDT) with Fibrinogen concentrate administered on the base of thromboelastography profile of the clot, targeted to guide the Fibrinogen administration and monitoring the profile of clot formation.
The clinical challenge for physicians facing traumatic emergencies, both in prehospital and in-hospital field, is to early recognize the TIC in patients with low injurity score and well preserved physiologic parameters. The early recognition of coagulative system alteration leads to an early support of coagulation and hopefully to a better outcome.

There is no clear evidence and consensus on which hematologic or clinical indicators to use as acute coagulopathy risk stratification in trauma patients.

On Feb 20 and 21 in Bologna, some of major italian experts in trauma gave life to a consensus conference on this topic. The result of the conference leads to an initial, but not least important, consensus on the major implant of the theory at the base of recognition and treatment of TIC.

First step of this implant is the decision on when to treat the patients and when the treatment is futile. If the treatment is not futile the second step is to recognize, based on hematologic values and clinical parameters, the patients at risk of coagulopathy. Some values were identified as suitable for the stratification of the risk, but among the participants were not consensus on which is the most important and wich cut-off level to use.

BE, HB. SBP, Lactate levels were the most wanted indicators for recognizing of TIC. Next step, after recognizing the risk of coagulopathy is the choice of sustaining coagulation. The experts achieved the consensus on this statement but not on which was the best way to do it: Goal Directed Therapy (thromboelastography and targeted Fibrinogen replacement) or Fix Ratio supplement with PRBC FFP an PLT.

Till here the consensus.

Giuseppe Nardi, an intensivist working in Rome at Shock and Trauma Center of Azienda Ospedaliera S. Camillo Forlanini and widely recognized as one of the major experts in trauma, tried to go beyond this statement, designing a clear path for future investigations and hopefully new consensus.
Steady underlining the subjective value of the data, he identified a potential cut-off value for each of the most important indicators of early coagulopathy in trauma.
He indicated:

  • BE -6 
  • SBP ↓100 mmHg
  • HB  ↓10 mg/dl 
  • Lactate ↑ 5 mmol/L

Said that just one of this values is predictive of fibrinogen depletion (normal plasma fibrinogen levels range from 200 to 450 mg/dl, and current guidelines recommend maintaining the plasma fibrinogen level above 150 m g/dl) and on the base of those values he hypothesized that, with a good approximation, clinicians can identify the risk of trauma induced coagulopathy.

Nardi based his assumption on some good articles present in letterature, but he mentioned one in particular:

Estimation of plasma fibrinogen levels based on hemoglobin, base excess and Injury Severity Score upon emergency room admission.

This is a retrospective study of major trauma patients (ISS ≥16) with documented plasma fibrinogen analysis upon ER admission. Plasma fibrinogen was correlated with Hb, BE and ISS, alone and in combination.

The study, being retrospective, is at risk of confounding bias even if regression analysis was conducted.

The authors concluded:”Upon ER admission, FIB of major trauma patients shows strong correlation with rapidly obtainable, routine laboratory parameters such as Hb and BE. These two parameters might provide an insightful and rapid tool to identify major trauma patients at risk of acquired hypofibrinogenemia. Early calculation of ISS could further increase the ability to predict FIB in these patients. We propose that FIB can be estimated during the initial phase of trauma care based on bedside tests.”

Nardi, together with Osvaldo Chiara, Giovanni Gordini and other well known experts in trauma, is part of the Trauma Update Network (TUN) and elaborated the Early Coagulopathy Support (ECS) protocol:

“The protocol aims to avoid the use of plasma in the patients who will need a limited number of PRBCs, reduce the plasma related complications, and improve coagulation support in patients requiring massive transfusion through the early restoration of fibrinogen blood concentration. The ECS protocol has been developed assuming to have a point of care monitoring of coagulation, but can also be applied if a viscoelastic monitoring is not available. The ECS will be adopted by the TUN trauma centers with strict monitoring of economic impact and clinical results” (from: Giuseppe Nardi, Vanessa Agostini, Beatrice Rondinelli Maria et al. Prevention and treatment of trauma induced coagulopathy (TIC). An intended protocol from the Italian trauma update research group)

The basic principles of ECS can be so summarized:

  • All hemorrhagic patients (or bleeding risk) should receive early antifibrinolytic therapy (within the first 3 hours of injury)
  • The severity of hypoperfusion and the risk of coagulopathy correlate with the levels of Lactate and BE and pH as well as with the values of PA and Hb.
  • In case of bleeding fibrinogen is the most critical factor in the coagulation process and should be early replaced
  • The remaining coagulation factors are significantly decreased only later, and only in response to massive hemorrhage
  • Platelets decreased significantly only after massive hemorrhage but their functionality may be significantly limited by hypothermia
  • The control and correction of hypothermia is essential
  • Fluid challenge can be granted using crystalloids in patients with bleeding who do not requires massive transfusion (≤6 PRBC within 24 hours)
  • Transfusions of plasma and PTL to patients who do not have a massive hemorrhage should be avoided
  • In case of massive bleeding, it is desirable to transfuse plasma early in relation Plasma / PRBC in 1: 2 or 1: 1 ratio.
  • It is not necessary to start the transfusion of platelets it immediately after the admission of the patient (except in cases of anti-aggregation therapy)
  • Coagulation monitoring should be guaranted by viscoelastic methods (ROTEM / TEG); in the absence of these tools coagulation parameters (INR, PTT) over a, fibrinogen and platelets, must be monitored at close intervals.
But how those assumption can be related to practical clinical world?
The identification of parameters and cut-off values to recognize TIC can be a great step forward on the choice of the right patients in whom starting an early hemostatic resuscitation, avoiding both the risk of exposure to unneeded side effects than the possibility of wasting precious clinical resources.
The achievement of target level of plasmatic fibrinogen (with Fresh Frozen Plasma in fix ratio or with the goal directed administration of concentrated Fibrinogen ) can be the next level for treating trauma patients.
In term of treatment, damage control resuscitation and early support of coagulation must guide our clinical gestalt when treating trauma patients.

References:

Logo MEDEST2

 

Pleural Ultrasonography versus Chest Radiography for the Diagnosis of Pneumothorax

11 Feb

Key Messages

  • Pleural ultrasound is less sensitive than previously reported but remains superior to chest radiograph for detection of pneumothorax in the trauma and critical care populations.

  • Training and familiarity with bedside ultrasound techniques may provide better accuracy, as appeared with the emergency physician performance.

  • High-resolution linear probe gives higher accuracy for the sliding pleura sign.

  • Ultrasound is convenient, is a readily available bedside procedure, is easy to learn, is accurate for diagnosing pneumothorax, and avoids patient exposure to ionizing radiation.

References:

Saadah Alrajab, Asser M Youssef, Nuri I Akkus, Gloria Caldito

Pleural Ultrasonography versus Chest Radiography for the Diagnosis of Pneumothorax Review of the Literature and Meta-analysis

Crit Care. 2013;17(5)

Faculty of Pre-Hospital Care Consensus Statements

20 Dic
Nuove Consensus Statements da parte della Faculty of Pre-Hospital Care che riguardano l’immobilizzazione spinale preospedaliera, l’inserzione farmacologicamente assistita della maschera laringea, la movimentazione minima preospedaliera del paziente traumatizzato e l’utilizzo dei device per la contenzione del bacino.
Sono tutte scaricabili liberamente sul nuovo sito della Faculty of Pre-Hospital Care e sulla pagina di MEDEST dedidcata alle linee guida.

Faculty of Pre-Hospital Care new Consensus Statements.

Sedare un paziente di cui si vuole gestire le vie aeree ed inserire un presidio sovraglottico? Un’eresia o una pratica che comunque esiste e come tale deve essere “goveranta”? La lettura di questo Statements apre nuove prospettive ad una pratica non ortodossa ma che, seppure in casi limitati, ha un suo razionale clinico.

L’immobilizazione spinale deve essere selettiva, e non deve riguardare tutti i pazienti traumatizzati a prescindere da criteri clinico prognostici. Già in passato MEDEST si è occupata di immobilizzazione spinale auspicando l’adozione di criteri clinici selettivi per l’utilizzo dei presidi d’immobilizzazione nel trauma preospedaliero. Questa Consensus Statements va finalmente in questa direzione.

Riassumiamo le principali racomandazioni:

  1. L’asse spinale è un presidio da utilizzare solo per l’estricazione del paziente vittima di trauma.
  2. Per il trasporto e le manovre diagnostiche intraospedaliere la barella scoop è il presidio più adatto. Minimizza i movimenti e diminuisce il rischio di lesioni da pressioni in regione dorsale.
  3. L’immobilizzazione in linea del capo è la tecnica raccomandata per l’immobilizzazione del rachide cervicale, in particolare in pazienti: con vie aeree compromesse che necessitano di essere gestite,  sospetto di aumentata pressione intracranica, combattivi ed agitati, bambini.
  4. Il collare cervicale se utilizzato deve essere ben dimensionato e correttamente applicato. Deve essere comunque allentato per evitare discomfort del paziente, facilitare la gestione delle vie aeree ed evitare il possibili innalzamento della pressione intracranica.
  5. I pazienti vittima di trauma penetrante senza segni neurologici non devono essere immobilizzati.
  6. I pazienti coscienti senza segni di intossicazione da sostanze o lesioni distraenti, se non intrappolati, devono essere invitati a posizionarsi autonomamente sulla barella.
  7. Viene scoraggiato l’utilizzo della manovra “standing take down” (paziente in piedi che viene posizionato sull’asse spinale facendolo appoggiare su di essa e poi accompagnato in posizione supina).

Un presidio per l’immobilizzazione pelvica deve essere sempre usato quando è presente un meccanismo di lesione compatibile con lesione del bacino e contemporanea instabilità emodinamica. Secondo gli autori non esistono evidenze che fanno preferire un presidio rispetto ad un altro. L’immobilizzatore del bacino non è controindicato anche in presenza di frattura alta del femore che  coinvolga l’acetabulo.

Sei interssato alle ultime linee guida in Emergenza Sanitaria

Visita la pagina di MEDEST dedicata alle ultime novità dal mondo dell’Emergenza

Logo MEDEST2

2013 Management of bleeding and coagulopathy following major trauma: an updated European guideline

3 Dic
Aggiornate le raccomandazioni Europee sulla diagnosi ed il controllo delle emorragie nei traumi maggiori.
Consultatele e scaricatele in pdf
Alla pagina dedicata alle linee guida trovate tutte le linee guida appena pubblicate su molti argomenti di attualità clinica in medicina d’urgenza.
Linee Guida

MEDEST you tube

CriticalCareNow

A Site for Intensivists and Resuscitationists

ALL Ohio EM

Supporting ALL Ohio EM Residencies in the #FOAMed World

Triggerlab

Let's try to make it simple

thinking critical care

a blog for thinking docs: blending good evidence, physiology, common sense, and applying it at the bedside!

urgentcareultrasound

More definitive diagnosis, better patient care

Critical Care Northampton

Reviewing Critical Care, Journals and FOAMed

OHCA research

Prehospital critical care for out-of-hospital cardiac arrest

SonoStuff

Education and entertainment for the ultrasound enthusiast

phemcast

A UK PREHOSPITAL PODCAST

First10EM

Emergency medicine - When minutes matter...

Songs or Stories

Sharing the Science and Art of Paediatric Anaesthesia

airwayNautics

"Live as if you will die tomorrow; Learn as if you will live forever"

resusNautics

Navigating resuscitation

Life in the Fast Lane • LITFL

Emergency medicine and critical care education blog

emDOCs.net - Emergency Medicine Education

Our goal is to inform the global EM community with timely and high yield content about what providers like YOU are seeing and doing everyday in your local ED.

The Collective

A Hive Mind for Prehospital and Retrieval Med

Dave on Airways

Thoughts and opinions on airways and resuscitation science

FOAMcast

A Free Open Access Medical Education Emergency Medicine Core Content Mash Up

Broome Docs

Rural Generalist Doctors Education

St.Emlyn's

Emergency Medicine #FOAMed

"CardioOnline"Basic and Advanced Cardiovascular medicine" Cariology" concepts and Review -Dr.Nabil Paktin,MD.FACC.دکتـور نبــــیل "پاکطــــین

این سایت را به آن دکتوران و محصلین طب که شب و روز برای رفاه نوع انسان فداکاری می کنند ، جوانی و لذایذ زندگی را بدون چشمداشت به امتیاز و نفرین و آفرین قربان خدمت به بشر می کنند و بار سنگین خدمت و اصلاح را بدوش می کشند ، اهداء می کنم This site is dedicated to all Doctors and students that aver the great responsibility of People’s well-being upon their shoulders and carry on their onerous task with utmost dedication and Devotionاولین سایت و ژورنال انتــرنتی علـــمی ،تخـصصی ، پــژوهشــی و آمــوزشــی طبـــی در افغــانســـتان

EmergencyPedia

Free Open Access Medical Education

Little Medic

Learning everything I can from everywhere I can. This is my little blog to keep track of new things medical, paramedical and pre-hospital from a student's perspective.

Prehospital Emergency Medicine Blog

All you want to know about prehospital emergency medicine

Italy Customized Tour Operator in Florence

Check out our updated blog posts at https://www.italycustomized.it/blog

EM Lyceum

where everything is up for debate . . .

Pediatric EM Morsels

Pediatric Emergency Medicine Education

AmboFOAM

Free Open Access Medical Education for Paramedics

Rural Doctors Net

useful resources for rural clinicians

Auckland HEMS

Unofficial site for prehospital care providers of the Auckland HEMS service

ECHOARTE

L'ECOGRAFIA: ENTROPIA DELL'IMMAGINE

MEDEST

Prehospital Emergency Medicine

EM Basic

Your Boot Camp Guide to Emergency Medicine

KI Doc

WE HAVE MOVED - VISIT WWW.KIDOCS.ORG FOR NEW CONTENT

Emergency Live

Prehospital Emergency Medicine

AMP EM

Academic Medicine Pearls in Emergency Medicine from THE Ohio State University Residency Program

Prehospital Emergency Medicine

 Academic Life in Emergency Medicine

Prehospital Emergency Medicine

Comments on: Homepage

Prehospital Emergency Medicine

Greater Sydney Area HEMS

The Pre-hospital & Retrieval Medicine Team of NSW Ambulance

%d blogger hanno fatto clic su Mi Piace per questo: