Archivio | Emergency Medicine RSS feed for this section

Beyond Guidelines: what’s new in OCHA management

6 Set

Chest compressions alternate to abdominal compression–decompression technique

Background

The abdominal compression–decompression technique is based on an “abdominal pump” model, which induces pressure changes within the abdominal cavity and promotes the return of blood from the abdominal cavity to fill the heart and be eventually pumped to the brain. A combination of abdominal compression–decompression and chest compression was previously shown to increase the venous refilling of the heart, which could generate increased coronary perfusion pressure and increase blood flow to vital organs . With this combination method, chest release during abdominal compression leads to increased venous return to the thorax by negative intrathoracic pressure. Moreover, abdominal decompression during chest compression may lead to increased blood flow via decreased afterload. In myocardial blood flow, a better 48-h outcome was documented with the combination method compared with STD-CPR

The study

Evaluation of abdominal compression– decompression combined with chest compression CP9R performed by a new device: Is the prognosis improved after this combination CPR technique?

This study was performed in China. It’s a single center, randomised, not blinded study.

The study aimed to compare the outcomes of standard cardiopulmonary resuscitation (STD- CPR) and combined chest compression and abdominal compression–decompression cardiopulmonary resuscitation (CO-CPR) following out-of-hospital cardiac arrest (OHCA).

Primary outcome ROSC. Secondary outcome hospital admission, hospital discharge and neurological outcome at hospital discharge.

Results

ROSC and survival to hospital admission: no statistical benefit

Survival at hospital discharge and neurological outcome: CO-CPR had statistical significant better outcome respect STD-CPR

Limitations

Single center, small sample size, no evaluation of possible abdominal injuries.

Bottom line

For prehospital use of combined chest compression and abdominal compression–decompression cardiopulmonary resuscitation we have first of all to account the need of an additional rescuer to perform abdominal compression-decompression. By the way the alternate chest/abdominal compression-decompression method is promising even if we need larger multicenter randomised trial for a more consistent evaluation of its efficacy.

Head and thorax elevation during cardiopulmonary resuscitation

Background

Gradual elevation of the head and thorax enhances venous return from the head and neck to the thorax and further lowers intracranial pressure. This automated controlled elevation (ACE) CPR strategy consists of: (1) manual active compression decompression (ACD)-CPR and/or suction cup-based automated (LUCAS 3) CPR; (2) an impedance threshold device (ITD); and (3) an automated controlled head and thorax patient positioning device (APPD).

The study

Head and thorax elevation during cardiopulmonary resuscitation using circulatory adjuncts is associated with improved survival

Observational, prospective study. The Objectives of the study was to assess the probability of OHCA survival to hospital discharge after ACE-CPR versus C-CPR. ACE-CPR data were collected from a dedicated registry implemented by 10 EMS Agencies. Conventional (C) CPR data were collected from 3 large historical randomized controlled OHCA resuscitation trials.

NB: for ACE-CPR only 6/10 agencies data were evaluated.

The primary outcome was survival to hospital discharge. Secondary outcomes included ROSC at any time, and survival to hospital dis- charge with favorable neurological function.

Results

Cumulative results on primary and secondary outcome before taking into consideration the time from 911 call to ACE-CPR were not statistically significative differences. The statistical significance of ACE-CPR was reached only when time from 911 call to ACE-CPR initiation was considered.

Limitations

Observational study. Participating personnel form EMS agencies were highly motivated about ACE-CPR. 165 patients excluded with no clear explanation (generally didn’t meet inclusion criteria) from 4 EMS participating agencies. Statistical significance on primary and secondary outcome was reached after surrogate secondary analysis that considered time form 911 call to ACE-CPR start.

Bottom line

There are still insufficient historical data to understand the benefit of automated controlled elevation (ACE) CPR and this study doesn’t clear any doubt about it’s efficacies on clinical oriented outcomes.

Aortic occlusion during cardiac arrest. Mechanical adrenaline?

Background

Thoracic aortic occlusion during chest compressions limits the vascular bed for the generated cardiac output. This may increase the aortic pressure and subsequently the coronary perfusion pressure (CPP).

The coronary perfusion pressure (CPP), the pressure gradient between the aorta and right atrium, is a major determinant of the myocardial blood flow. Consequently, generating a high CPP by providing high-quality chest compression during CPR is one of the most critical factors for achieving ROSC in cardiac arrest patients.

It is uncontroversial to state that the desired effect of adrenaline in CPR is the potential increase in CPP. The potential detrimental effects of adrenaline, such as decreased cerebral blood flow, increased myocardial oxygen consumption or recurrent ventricular tachycardias after ROSC, is yet to be found with REBOA. However, adverse effects of REBOA are not reported in the limited human data published, nor has this been an endpoint in the studies conducted so far.

The study

Resuscitative endovascular occlusion of the aorta (REBOA) as a mechanical method for increasing the coronary perfusion pressure in non-traumatic out-of-hospital cardiac arrest patients

This is a pilot study. The aim of the study was to calculate the CPP before and after REBOA balloon inflation. EtCO2 and median aortic pressure before and after balloon inflating were also measured.

Results

CPP, MAP and EtCO2 significative increased after REBOA placement in Zone 1 and balloon inflation

Limitations

Single center, small numbers, need of a large number of operators to insert the REBOA and to obtain the measurements.

Bottom line

REBOA in Cardiac Arrest is potentially useful to increase CPP and less dangerous than epinephrine administration.

It’s feasibility in emergency (in-hospital and out of hospital) settings in a timely manner and with a small number of medical personnel needs to be demonstrated.

By Mario Rugna

In case of oesophageal intubation

19 Ago

Just published Preventing unrecognised oesophageal intubation: a consensus guideline from the Project for Universal Management of Airways and international airway societies

Thanks to a prestigious panel of international authors. Great job and definitely solid indication about how to prevent and recognise accidental oesophageal intubation.

Just some of the key recommendations

  • Exhaled carbon dioxide monitoring and pulse oximetry should be available and used for all episodes of airway management.
  • Routine use of a videolaryngoscope is recommended whenever feasible.
  • Inability to detect sustained exhaled carbon dioxide requires oesophageal intubation to be actively excluded.
  • Tube removal should be undertaken if any of the following are true:
    • Oesophageal placement cannot be excluded
    • Sustained exhaled carbon dioxide cannot be restored
    • Oxygen saturation deteriorates at any point before restoring sustained exhaled carbon dioxide

Refer to the full text guidelines for more.
Here is the link to Safe Airway Society livestream event.
Must read, must follow. Free open access.

Let’s go outside

The following are personal considerations on peculiar aspects about management of accidental oesophageal intubation in prehospital environment and come from my personal clinical experience.

Beware they are just personal considerations and practical tricks and tips and are not intended to substitute the above guidelines. 

They are intended to suggest an alternative mental and technical approach when dealing with oesophageal intubation on uncontrolled patients in difficult environment.

Some general considerations

  1. Prehospital uncontrolled patients are not on empty stomach so are at high risk of regurgitation/inhalation
  2. Even few ventilation efforts in case of oesophageal intubation pone the patient at high risk of regurgitation/inhalation 
  3. Suctioning in prehospital setting is not always ready avalliate (mind your environment) or maximally performant (mind your equipment) 
  4. First attempt in prehospital setting must be always the best one. Think before trying a second attempt in case of failure. Implement your plan or change plan.
  5. Apply the Indication, Suitability, Feasibility approach while supporting oxygenation, ventilation and protection.

DO NOT REMOVE THE OT TUBE STRAIGHT FORWARD IN CASE OF ACCIDENTAL OESOPHAGEAL INTUBATION IN PREHOSPITAL ENVIRONMENT.

The way I like it. The way I do it.

  1. Live the “oesophageal” OT tube in (overcuffed) and if it’s possible apply a continuous suctioning to exclude the oesophagus and protect the airways 
  2. Place a SGA to restore oxygenation and ventilation (trough BMV or NIV)
  3. After restoring oxygenation (SaO2 >94%) and ventilation (EtCO2 40 mmHg) if suitable and feasible (see below) proceed to a second attempt of tracheal intubation (must be videolaryngoscope+bougie)
  4. If the second attempt succeeds remove the “oesophageal” OT
  5. If the second attempt is not suitable or feasible transport to nearest hospital (patient is well oxygenated and ventilated via SGA and protected via oesophageal exclusion) for further stabilisation (you can replace the oesophageal OT tube with a large bore oro-gastric tube or insert the orogastric tube trough the SGA dedicated channel)
  6. If you can’t restore oxygenation and ventilation via SGA or you can’t place a SGA remove the oesophageal OT tube and try to oxygenate and ventilate (remember patient is not protected) via BVM and NC (double oxygenation) 
  7. If even BVM fails declare CICO 
Suitability 
  • Do I have a plan to implement regarding the  first attempt
  • Can I improve my environment (Setting) moving the patient to a more comfortable place/position 
  • Is the time to nearest hospital short/long 
Feasibility 
  • Am I in the right mental mood after 1st attempt (me) to try a better second one
  • Is my team ready for a second attempt (team) 
  • Do I have the right equipment to implement my second attempt (Equipment)

The visual algorithm

The Video

By Mario Rugna

Beyond Advanced Cardiac Life Support. Do we have to change our practice in COVID Era?

3 Mag

Main changes in recommendations

Personal Protective Equipment for Advanced Life Support interventions need to be at maximum level of protection of full body, eyes and airways.

CAT 3 level of protection 4 (at least) for the full body

FPP2/N95 airway filter for team members who are NOT directly involved in airway management, ventilation or manual chest compressions

FPP3/N99 airway filter for providers who are directly involved in airway management, ventilation and manual chest compressions.

Face shield and protective googles are strongly suggested

Mechanical Chest compressors devices are the gold standard to perform cardiac massage. They reduce contacts and contamination risk and team member exposure to contaminants.

Adhesive disposable pads are the only option to check rhythm and deliver shock. Dispose non-disposable, manual pads.

Passive O2 administration (via simple face mack at a rate of 15l/m) during chest compressions is the first option over bag mask ventilation when performing Basic Life Support waiting for advanced airway management.When using a Bag Valve Mask always put a HEPA/HME filter between Bag and mask to avoid contamination

Hold chest compressions when performing airway managment

Cover patient head with a transparent plastic foil to minimise virus spreading and contamination when performing airway management and bag mask ventilation

Tracheal intubation using a video laryngoscope is the first line option for advanced airway management to minimise contamination.

If video laryngoscope is not available Extraglottic devices are an acceptable first line option

Use all the implementation to improve intubation first passage success:

Video laringoscopy

Bougie

RAMP positioning

Suctioning (SALAD technique)

Use all the implementation to improve Extraglottic device placement

Laryngoscope for tongue displacement and mouth opening (DO NOT USE hands)

Deflate cuff

Lubrificate the device

Whatever plan you apply use an HEPA/HME filter immediately after the ventilation device

Use disposable cover and disposable gel to perform Ultrasound during chest compressions

COVID-19 and O2 therapy. Initial prehospital approach in mild symptomatic patients.

16 Mar

General considerations (dyspneic non infective patients)

Self Protection 

The generic dyspneic patients do not pose any particular self protection issues above the general precautions

Clinical needs

Non infected dyspneic patient need moderately high FiO2 but considerately high oxygen flow rates. 

The available systems we have in this moment (at least on my operative setting) to deliver normally pressured O2 are:

  1. Nasal cannula
    • Maximum gas flow 15 l/m
    • FiO2 variable between 25-45% 
  2. Simple face mask
    • Maximum gas flow 15 l/m 
    • FiO2 variable between 40-60% at the mask level
  3. Nonrebreather face mask (reservoir)
    • Maximum gas flow 15 l/m
    • FiO2 more 80-100%
  4. Venturi mask 
    • Gas flow between 40 to over 80 l/m
    • FiO2 titratable between 24% and 60%management-devices-fio2-oxygen-delivery-original

To satisfy the increased minute ventilation of the highly dyspneic patient Venturi mask is the best device (high flow rate) and permits at the same time to tritrate the FiO2 based on the patients need avoiding indiscriminate hyperoxygenation. 


Particular considerations in dyspneic potentially infective COVID-19 patients

Disclaimer

The following considerations derived from our initial experience on the field in suspect or confirmed COVID-19 with respiratory symptoms at their presentation or in the initial phases. Those are the majority of the patients we observed till the day this post was written. 

The following considerations are not intended for all the severe hypoxic patients who definitively need early intubation and positive pressure ventilation.

Clinical needs

Those are dyspneic hypoxic patients who needs moderately high FiO2 and request more gas flow rates to satisfy increased minute ventilation.

So from an exclusively clinical point of view the best way to deliver oxygen it would be a Venturi mask. 

Self Protection 

In the actual situation in Italy the epidemiological geographical criteria is no more reliable to identify COVID-19 patients so any prehospital healthcare professional providing direct care to a dyspneic patient needs to be protected al least with:

    • Eye protection or Facial shield
    • Medical mask 
    • Disposable gown
    • Disposable gloves

At the same time good practice is to reduce at minimum the number of direct caring providers, to maintain, if possible, a security distance > 1 mt,  to invite any patient to wear, if tolerated, a surgical mask,  and a pair of disposable gloves to minimise the risk of infection. 

When providing direct care of dyspneic patients who needs O2 therapy the level of risk for droplet diffusion is generally increased cause of the presence of the gas flow. 

All the available systems for oxygen delivery we mentioned above are open and allow a free exaltation of the patient in the surrounding area and potentially exposes all the healthcare caregivers to an increased risk of contamination cause of the augmented droplet dispersion and to a lack of protection.


Considerations 

So when dealing with O2 therapy in the potentially infected patients we need to consider the relationship between risk of contamination and clinical efficacy of any device.

Nasal Cannula

  • Oxygenation –—+
  • Protection ++++

Nasal Cannula is the only device that permits the patient to wear a surgical mask on nose and mouth,  decreasing droplet diffusion and protecting the healthcare team and at the same time maintains a certain clinical efficacy..

So my first approach is Nasal Cannula underneath a medical mask. 

Utilising a different device than nasal cannula plus medical mask on the patient mouth and nose (simple, non rebreather or Venturi face mask) to deliver oxygen therapy all healthcare professionals need to be aware that the risk infection increases and the patient has no barriers and so they have to consider improving his own self protection level (N95, FPP2 mask at least)

Simple/Non rebreather Facial Mask 

  • Oxygenation —++
  • Protection ++–

When you can’t reach a clinical acceptable SpO2 with nasal cannula we need to downgrade on our first goal (protection) to achieve a better clinical outcome. 

Simple facial masks maintain a moderate protection form droplet spreading with a more clinical efficacy respect th the nasal cannula.

Nonrebreather facial mask either moderately protects against droplet diffusion with an improvement in FiO2 above simple face mask but the nonrebreather bag is a potential expirate gas reservoir potentially  increasing the risk of spreading.

Venturi mask

  • Oxygenation -++++
  • Protection —-+

High flow titratable FiO2 in an open system mask can satisfy all minute ventilation needing guaranteeing Oxygenation at a cost of a great risk of spreading. My last choice in the scale of conventional Oxygen therapy.

 

References:

DSC Hui,  MTV Chan, B Chow. Aerosol dispersion during various respiratory therapies: a risk assessment model of nosocomial infection to health care workers. Hong Kong Med J 2014;20(Suppl 4):S9-13

M. P. Wan , C. Y. H. Chao , Y. D. Ng , G. N. Sze To & W. C. Yu (2007) Dispersion of Expiratory Droplets in a General Hospital Ward with Ceiling Mixing Type Mechanical Ventilation System, Aerosol Science and Technology, 41:3, 244-258, DOI: 10.1080/02786820601146985

Shu-An Lee, Dong-Chir Hwang, He-Yi Li, Chieh-Fu Tsai, Chun-Wan Chen,and Jen-Kun Chen. Particle Size-Selective Assessment of Protection of
European Standard FFP Respirators and Surgical Masks against Particles-Tested with Human Subjects
. Journal of Healthcare Engineering. Volume 2016, Article ID 8572493, 12 pages

Thanks for reviewing and suggesting to: Scott Weingart, Jim DuCanto, Velia Marta Antonini, Giacomo Magagnotti, Andrea Paoli and all the other colleagues and friends who supported this post

Hands Free Criticale Care. Yes We Can!

28 Feb

 

Prehospital Emergency Medicine. We are different.

12 Mag

phem_sfondiChiari

YES prehospital professionals are different from any other medical provider.
YES Prehospital Emergency Medicine is different because is not just clinical competence and technical skills. It’s much more.
WE are different because performing skills or procedures depends not just from the right patient and the right indication, but is heavily influenced by the environment where we work and the team we lead.
BUT despite this we perform complex procedures even in the hardest situations.
WE are different because we always deal with the “contro” of a possible failure in the middle of nowhere, and the “pro” of a probable success in a safe and warm environment (as the nearest emergency room).
BUT despite this we act, succeed and learn from our failures.
WE are lucky because often our patients don’t have life treating conditions, they just need to talk and we probably are their last chance. 
WE love our job.
WE love Prehospital Emergency Medicine.

 

Join us in Rome to share the same passion

30825282_10209951402736787_119340799_o

Logo MEDEST2

Articles at the Top. Take home messages from 2017 (part 3). Trauma.

1 Mag

Welcome to our review of the best articles from the last year.

This will be a weekly (or so..) appointment with the top articles from 2017 divided by topic and chosen by me.

Here is the best about:

 Trauma

Traumatic Cardiac Arrest

Fluid Therapy

Spinal Immobilisation

Field Triage

Antifibrinolytics

Prehospital blood

Massive transfusion protocol

Traumatic Brain Injury

The rest

If you are interested on a daily update about the best emergency medicine literature follow me on Facebook, Twitter or give your like to MEDEST Facebook page.

Logo MEDEST2

 

Don’t kill your patient with a probe! Welcome to UltraSound in Cardiac Arrest for (not so) Dummies!

8 Mar

A 2017 study about US and cardiac arrest aroused the debate about using POCUS during cardiac arrest . The authors concluded that:

“The use of POCUS during cardiac arrest resuscitation was associated with significantly increased duration of pulse checks, nearly doubling the 10-s maximum duration recommended in current guidelines.”

THE QUESTION

Is POCUS an unuseful loose of time and a potential KILLER when used on patients in Cardiac Arrest?

licence-to-kill

In my personal experience (and in the EMS where I work) we tried to give an answer to this question formulating a structured approach to use ultrasound during a code. The objective is to have vital information from the probe without delays or interruption in chest compressions. 

THE RATIONALE

In WHICH cardiac arrest using POCUS really worths the price?

For sure PEA and Asistoly are the the most relevant conditions to use a probe, on the contrary in defibrillating rhythms, defibrillation and anti-arythmic therapy is a priority, and no useful information can come from ultrasound.

So look at the monitor, if there is a defibrillating rhythm continue with classical ALS approach.

Use a probe only if Asystoly or a PEA are present.

WHEN we use the probe?

The right moment is during the 10 seconds pause indicated from guidelines to asses the rhythm.

Look at the monitor screen for rhythm check and place the probe on the patient for no longer than 10 seconds.

WHERE we place the probe.

  1. SubCOSTAL view of the heart for heart beating
  2. SubCOSTAL view of the heart pericardial effusion and VD>VS
  3. Left CHEST view for lung sliding
  4. Right CHEST view for lung slinging

WHAT  we can identify with ultrasound during Cardiac Arrest.

First thing is there any cardiac activity?

We no more check the pulse, but rely on indirect signs of cardiac arrest when starting chest compressions, but at the beginning of the code and during the reanimation, cardiac activity is a game changing information.

Second thing is does exists any reversible cause of Cardiac Arrest?

Addressing and treating those can really change the outcome of the patient. 

Pulmonary Embolism

Cardiac Tamponade

Tension Pneumo

Hypovolemia

 

Infogram ECOALS

The method

During the 10 sec pause asses the rhythm and place the probe .

During the following 2 min CPR think and address, when indicated, the reversible causes.

infogram-ecoals12.jpg

THE SCHEDULE

infogram-ecoals4.jpg

IMG_2597

 

 

 

 

HEART BEATING

 

 

 

infogram-ecoals11-e1520247725886.jpg

If heart is beating and the rhythm is Asystoly think to an equipment problem or to a very fine VF.

 

If the heart is beating and we have a PEA this is not a true PEA but a pseudo PEA so we have to treat this patient as a profound shock patient (POCUS differential diagnosis for shock) more than CA patient.

 

If heart is not beating, any rhythm, we look for reversible cause of CA.

 

infogram-ecoals5.jpg

IMG_2597

PERICARDIAL EFFUSION 

 

VD>VS

 

 

 

Infogram ECOALS1

If pericardial effusion is present think at CARDIAC TAMPONADE

If VD>VS think at PULMONARY EMBOLISM 

If no one of that are present go to the following step 

 

infogram-ecoals2-e1520249512473.jpg

IMG_2597

 

Lung Sliding

 

 

 

 

Infogram ECOALS1

If lung sliding is absent  think at a selective intubation of the right main bronchus or at a PNX. If lung sliding is present go to the following step.

 

infogram-ecoals6.jpg

IMG_2597Lung Sliding

 

 

 

Infogram ECOALS1

If lung sliding is absent  think at a PNX.

Can we scan more during 2 min CPR?

We can

Left flank and look for free fluid.

img_2601.jpg

Right flank and look for free fluid.

img_2600.jpg

If there is free fluid in the abdomen think and treat HYPOVOLEMIA.

ob_291b8c_attention-logo-red-and-gold-color

REMEMBER! At any time during the code, if EtCO2 rises or a coordinated electric activity is present 

NO PULSE CHECK

carotideo2.jpghorrifiedface-650x488

USE ULTRASOUND TO IDENTIFY A BEATING HEART

TRUST THE PROBE NOT YOUR FINGERS

ProbeOK

If no reversible cause are detected, and the patient is still in non defibrillating rhythm, check the heart and the EtCO2.

If heart is not beating and EtCO2 level is less than 10 mmHg. during good quality chest compressions, consider to call the code.

 

USninja1

 

 

 

 

 

 

 

Articles at the Top. Take home messages from 2017 (part 2).

19 Gen

Welcome to our annual review of the best articles from the finishing year.

This will be a weekly (or so..) appointment with the top (or so…) articles of 2017 divided by topic and chosen by me.

Here is the best (for me) about:

 Advanced Life Support

Here are the best 2017 articles:

My take home messages:

Pathophysiological bases in experimental swine models

  • In a swine model following primary cardiac arrest the respiration continues at least for 1 minute. and after that Gasping starts lasting for another minute.
  • In a swine model following primary cardiac arrest the blood shifts from high pressure compartment (arteries) to low pressure compartment (veins). 
  • In a swine model the PaO2 following primary cardiac untreated VF arrests PaO2 results 70 mmHg after 9 min with a saturation of 93% and decrease at 44 mmHg with a saturation of 61% after 14 min of CPR. In this period airway management with possible interruption of chest compressions and starting positive pressure ventilation (with decreased return to the thorax end depression of cardiac output) is not mandatory due to the low cost/beneficial ratio and the potential detrimental effect. 

Chest compressions

  • Chest compressione only CPR is associated with worst outcome in children under 8 yers. Always perform chest compression/ventilation (ratio 15:2) in children <8 years of age (only exception if the cardiac arrest is due to primitive cardiac causes). 
  • Chest compressione only CPR can be a valuable option in adult witnessed VF/pulseless VT primary cardiac arrest (delayed airway management and passive O2 administration is reasonable).
  • Mechanical chest compression (MCC) is the future of CPR. They still do not demonstrated evident superiority in terms of outcome respect to manual chest compressions, but are evidently not inferior with a similar rate of life treating lesions. For sure MCC avoid variability in quality and allows good quality CC during transport. 

Ventilation

  • Lower Tidal volumes following OHCA is independently associated with favourable neurocognitive outcome
  • Weak evidences demonstrate that the ideal rate for ventilation of intubated patients  during CPR is 10/min

Airway management

  • There is not beneficial effect on outcome with early intubation in Cardiac Arrest (CA)
  • Privilege High Quality CPR and Defibrillation (if needed).
  • Use Supraglottic Airway Devices (SAD) in first part (15 min) of resuscitation 
  • If Mechanical Chest Compressions is used, to optimise ventilation with SAD, use 30:2 ratio (because the intrathoracic pressure generated during MCC overrules that generated from SAD and impaires ventilation).
  • In prolonged Cardiac Arrest management converting SAD to Endotracheal Tube can be considered.
  • Experience provider only can perform endotracheal intubation in CA. They have a better chance of first passage rate, without interruption in chest compressions. First pass success rate is positively associated to survival and good neurological outcome.

Defibrillation

  • Escalating bilevel energy (150-200-360 Joule) is associated with more efficacy in termination of shock resistant VF/pulselessVT cardiac arrest
  • Dual Sequential Defibrillation is feasible and safe. Although the evidences on its beneficial effect on outcome are still lacking it has to be considered in case of CA with refractory shockable rhythm. 

Antiarrhythmics drugs

  • There has been no conclusive evidence that any antiarrhythmic agents improve rates of ROSC, survival to admission, survival to discharge or neurological outcomes.

Ultrasound

  • Ultrasound in PEA is a key tool to detect CA causes improving survivival.

Post Resuscitation Care

  • In post resuscitation phase avoid any arterial oxygen and carbon dioxide abnormality because are associated to increased mortality.
  • Centralisation of resuscitated patients toward an acute PCI/CABG capable Center  is associated to better outcome.

Targeted Temperature Management

  • Prehospital cooling does not improve faster in-hospital target temperature achieving and due to its costs is not recommended.
If you are interested on a daily update about the best emergency medicine literature follow me on Facebook, Twitter or give your like to MEDEST Facebook page.

Logo MEDEST2

 

Articles at the Top. Take home messages from 2017 (part 1).

25 Dic

Welcome to our annual review of the best articles from the past year.

This will be a weekly (or so..) appointment with the top (or so…) articles of 2017 divided by topic and chosen by me.

At the end of the post I will also mention some take home points as summary of the evidences emerged from the articles. 

And now here is the best (for me) about:

 Airway management

Here are the best articles of the past year about Airway Management:

My take home messages about airway management:

  1. Risk factors for intubation related cardiac arrest are: overweight or obesity, age more than 75 years old, low SBP prior to intubation, hypoxemia prior to intubation, and absence of preoxygenation before intubation procedure.
  2. Preoxygenation is crucial (at least 2 minutes), before paralysing, to extend safe apnea time.
  3. Use apneic oxygenation during intubation attempts.
  4. Tracheal intubation is good in the hands of very well skilled professionals. Otherwise can improve mortality rate.
  5. Supraglottic devices perform well in cardiac arrest and are a valuable option for airway management. 
  6. Videolaryngoscopy improve glottic view but need training to improve first pass success.
  7. Always use paralytics when intubating a non cardiac arrest patient. It improves the chances fo first pass success.
  8. Rocuronium and Succynocholine are both valuable options for paralysis in airway management. 
  9. Dose Succynocholine, and other depolarising neuromuscular blockade drugs, based on actual body weight. Dose Rocuronium or Vecuronium based on ideal body weight.
  10. Use cuffed tracheal tubes even in paediatric patients. They perform well and  complications rate is the same. 
  11. The difficult airway is a myth. It’s not  a matter of technique but of decision making.
If you are interested on a daily update about the best emergency medicine literature follow me on Facebook, Twitter or give your like to MEDEST Facebook page.

Logo MEDEST2

 

CriticalCareNow

A Site for Intensivists and Resuscitationists

ALL Ohio EM

Supporting ALL Ohio EM Residencies in the #FOAMed World

Triggerlab

Let's try to make it simple

thinking critical care

a blog for thinking docs: blending good evidence, physiology, common sense, and applying it at the bedside!

urgentcareultrasound

More definitive diagnosis, better patient care

Critical Care Northampton

Reviewing Critical Care, Journals and FOAMed

OHCA research

Prehospital critical care for out-of-hospital cardiac arrest

SonoStuff

Education and entertainment for the ultrasound enthusiast

phemcast

A UK PREHOSPITAL PODCAST

First10EM

Emergency medicine - When minutes matter...

Songs or Stories

Sharing the Science and Art of Paediatric Anaesthesia

airwayNautics

"Live as if you will die tomorrow; Learn as if you will live forever"

resusNautics

Navigating resuscitation

Life in the Fast Lane • LITFL

Emergency medicine and critical care education blog

emDOCs.net - Emergency Medicine Education

Our goal is to inform the global EM community with timely and high yield content about what providers like YOU are seeing and doing everyday in your local ED.

The Collective

A Hive Mind for Prehospital and Retrieval Med

Dave on Airways

Thoughts and opinions on airways and resuscitation science

FOAMcast

A Free Open Access Medical Education Emergency Medicine Core Content Mash Up

Broome Docs

Rural Generalist Doctors Education

St.Emlyn's

Emergency Medicine #FOAMed

"CardioOnline"Basic and Advanced Cardiovascular medicine" Cariology" concepts and Review -Dr.Nabil Paktin,MD.FACC.دکتـور نبــــیل "پاکطــــین

این سایت را به آن دکتوران و محصلین طب که شب و روز برای رفاه نوع انسان فداکاری می کنند ، جوانی و لذایذ زندگی را بدون چشمداشت به امتیاز و نفرین و آفرین قربان خدمت به بشر می کنند و بار سنگین خدمت و اصلاح را بدوش می کشند ، اهداء می کنم This site is dedicated to all Doctors and students that aver the great responsibility of People’s well-being upon their shoulders and carry on their onerous task with utmost dedication and Devotionاولین سایت و ژورنال انتــرنتی علـــمی ،تخـصصی ، پــژوهشــی و آمــوزشــی طبـــی در افغــانســـتان

EmergencyPedia

Free Open Access Medical Education

Little Medic

Learning everything I can from everywhere I can. This is my little blog to keep track of new things medical, paramedical and pre-hospital from a student's perspective.

Prehospital Emergency Medicine Blog

All you want to know about prehospital emergency medicine

Italy Customized Tour Operator in Florence

Check out our updated blog posts at https://www.italycustomized.it/blog

GoogleFOAM/FOAMSearch

The FOAM Search Engine

EM Lyceum

where everything is up for debate . . .

Pediatric EM Morsels

Pediatric Emergency Medicine Education

AmboFOAM

Free Open Access Medical Education for Paramedics

Rural Doctors Net

useful resources for rural clinicians

Auckland HEMS

Unofficial site for prehospital care providers of the Auckland HEMS service

ECHOARTE

L'ECOGRAFIA: ENTROPIA DELL'IMMAGINE

MEDEST

Prehospital Emergency Medicine

EM Basic

Your Boot Camp Guide to Emergency Medicine

KI Doc

WE HAVE MOVED - VISIT WWW.KIDOCS.ORG FOR NEW CONTENT

Emergency Live

Prehospital Emergency Medicine

AMP EM

Academic Medicine Pearls in Emergency Medicine from THE Ohio State University Residency Program

Prehospital Emergency Medicine

 Academic Life in Emergency Medicine

Prehospital Emergency Medicine

Comments on: Homepage

Prehospital Emergency Medicine

Greater Sydney Area HEMS

The Pre-hospital & Retrieval Medicine Team of NSW Ambulance

%d blogger hanno fatto clic su Mi Piace per questo: