The Circulation Improving Resuscitation Care (CIRC) Trial

Lars Wik, MD, PhD, PI CIRC
Representing the CIRC Investigators
National Centre of Prehospital Emergency Care
Oslo University Hospital,
Norway

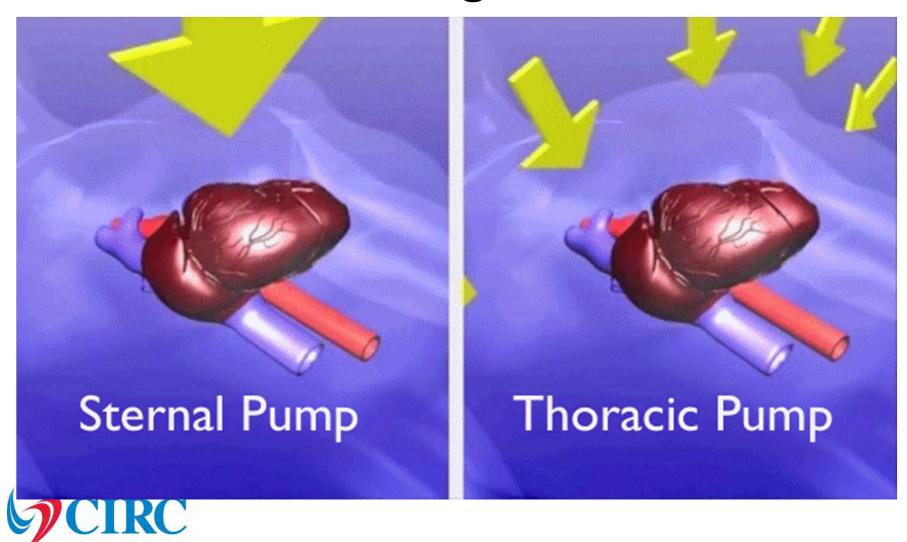
Co-Authors

- Jan-Aage Olsen
- David Persse
- Fritz Sterz
- Michael Lozano Jr
- Marc A. Brouwer
- Mark Westfall
- Chris M. Souders

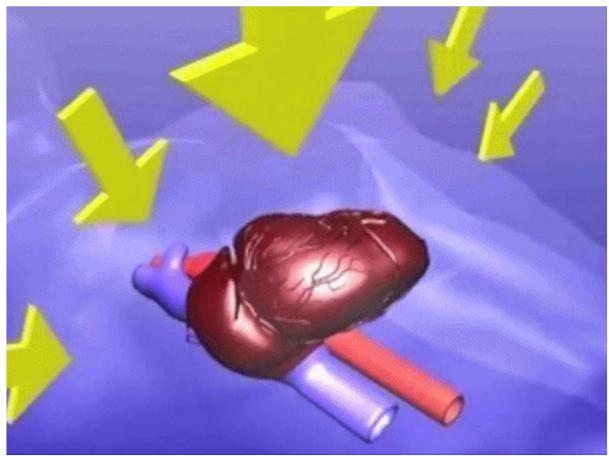
- Reinhard Malzer
- Pierre M. van Grunsven
- David T. Travis
- Anne Whitehead
- Ulrich R. Herken
- E. Brooke Lerner

Conflict of Interest

- Dr. Herken employed by ZOLL Medical Corp.
- Trial funded by ZOLL
 - ZOLL and Principal investigator developed the trial protocol with
 - Study investigators
 - Staff at Data Coordinating Center
 - Statistical consultants
- Investigators' institutions received funding from ZOLL



Mechanical Chest Compression


- May overcome poor compression quality
- Advantages
 - Reduces provider fatigue
 - Can be used in confined spaces
 - Safely deliver compressions during transport
 - Can be used during interventions
 - Bridge to more advanced procedures

Mechanisms for Creating Blood Flow during CPR

Load Distributing Band CPR

The Load Distributing Band uses both sternal and thoracic pump mechanisms to create blood flow during CPR

Statistics for dummies

 We perform a study in a small part of the world and talk about our results as it was the world we had studied

- The world probability is p, but the probability we have found is p*
- We need a measure to visualize how much these probabilities diverge
- A Confidence Interval (CI) describe how much p* (an estimate of a probability) diverge from p (the true probability)

Statistics for dummies

- Mean is a reasonable estimate (however, uncertain) for expectation of something we would like to know
- If we create an interval around mean that with great probability will include our expected value it will be our CI and will be a measure of the uncertainty of mean
- The smaller the CI is, the more reliable is our results in reflecting the real world

Statistics for dummies

- Odds is possibilities, (deutch: chancen)
 - ratio
- Confidence believe in, (deutch: vertrauen, norwegian: tillit)
 - interval
 - It measure the margin of error of a measure and is reported as %.
 - A 95% CI include the true value with a probability of 0.95.

Study Device

- Load Distributing Band
- Battery powered
- Reduces AP chest diameter by 20%
- 30:2 or continuous compressions
- Rate 80 min⁻¹

AutoPulse/LDB Research

- Shown to improve hemodynamics*
- Pre-hospital survival studies conflict
 - 3 retrospective studies found improved outcome ‡
 - 1 RCT (ASPIRE) stopped early[#]
 - No difference in 4 hour survival
 - Cerebral performance worse at discharge

*Ikeno F 2006; Duchateau FX 2010; Timerman 2004; Halperin 2004

‡Casner 2005; Ong 2006; Krep 2007;

#Hallstrom 2006

CPR fraction

Total CPR time is 10 min, chest compressions for 5 min CPR fraction is 50%

CIRC Trial Objectives

- Compare iA-CPR vs. M-CPR
 - Primary endpoint:
 - Survival to hospital discharge
 - Secondary endpoints:
 - ROSC to ED
 - 24 hour survival
 - Safety endpoint:
 - mRS score

Published Methods Papers

Contents lists available at ScienceDirect

Resuscitation

journal homepage: www.elsevier.com/locate/resuscitation

Clinical paper

Design of the Circulation Improving Resuscitation Care (CIRC) Trial: A new state of the art design for out-of-hospital cardiac arrest research*,**

E. Brooke Lerner^{a,*}, David Persse^b, Chris M. Souders^b, Fritz Sterz^c, Reinhard Malzer^d, Michael Lozano Jr. ^{e,f}, Mark Westfall^{g,h,i,j,k}, Marc A. Brouwer¹, Pierre M. van Grunsven^m, Anne Whiteheadⁿ, Jan-Aage Olsen^o,

- ^a Department of Emergency Medicine, Medical College of Wisco
- b Houston Fire Department and the Baylor College of Medicine,
- ^c Department of Emergency Medicine, Medical University of Vie ^d Vienna City Administration, Municipal Department 70, Emergence
- e Department of Emergency Medicine, Lake Erie College of Osteo
- Hillsborough County Fire Rescue, Tampa, FL, United States
- g Gold Cross Ambulance Service, Menasha, WI, United States
 Appleton Fire Department, Appleton, WI, United States
- Neenah-Menasha Fire Department, Neenah, WI, United States
- i Grand Chute Fire Department, Grand Chute, WI, United States

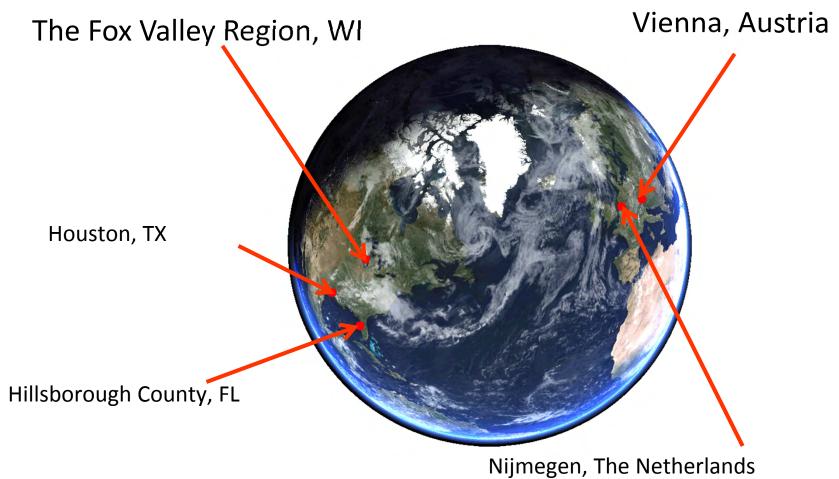
 1 Theda Clark Regional Medical Center, Neenah, WI, United Stat
- Heart Lung Center, Department of Cardiology, Radboud Univer
- ^m Regional Ambulance Service Gelderland-Zuid, Nijmegen, The I
 ⁿ Medical & Pharmaceutical Statistics Research Unit, Department
- " Medical & Pharmaceutical Statistics Research Unit, Departmei O National Competence Centre of Emergency Medicine, Oslo Uni
- P ZOLL Medical Corporation, Chelmsford, MA, United States

Contents lists available at ScienceDirect

Resuscitation

journal homepage: www.elsevier.com/locate/resuscitation

Simulation and education


Advanced life support performance with manual and mechanical chest compressions in a randomized, multicentre manikin study*

Oystein Tomte a,b,*, Kjetil Sunde a,b, Tonje Lorem a,c, Bjorn Auestad d, Chris Souders e,f, Jeff Jensen g, Lars Wik a,c

- a Institute for Experimental Medical Research, Surgical Division, University of Oslo, Norway
- Department of Anaesthesiology, Division of Emergency Medicine, Ulleval University Hospital, Oslo, Norway
- La National Competence Centre of Emergency Medicine, Pre-hospital Division, Ulleval University Hospital, Oslo, Norway
- ^d Department of Mathematics and Natural Sciences, University of Stavanger, Norway
- e Houston Fire Department, Houston, TX, USA
- [†] Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- 8 ZOLL Medical Corporation, MA, USA

Setting

PI Trial Requirements

- 1. High quality manual CPR
- 2. Monitor CPR process in both arms
- 3. Standardized training

Provider training

- 4 hour standardized training
 - Review study protocol
 - Review CPR process
 - Pit Crew deployment strategy
 - Written and practical examination

Verification of Protocol Adherence

- Formal simulation study*
 - Full Megacode simulation
 - Validation of protocol and training program
- Evaluated protocol compliance
- Evaluated CPR quality
 - AutoPulse AND manual compressions
- Used to guide refresher training curriculum

Trial Phases

Three distinct study phases

Deployment and usage of the AutoPulse for every OHCA*

Randomization and adherence to full study protocol for each OHCA*

Randomization and adherence to full study protocol for each OHCA – Data included in analysis

*Transition based on predefined measures of protocol compliance according to monitoring of the CPR process

Subject Inclusion

- 18 years of age or older
- OHCA of presumed cardiac etiology
- Randomization after M-CPR initiated

Randomization Procedure

- Confirm cardiac arrest
- Verify need for CPR
- Start manual compressions
- Determine trial eligibility
- Open randomization envelope
- Treat per randomization card

Subject Exclusion

- Known or apparent pregnancy
- Do Not Resuscitate orders
- Too big for the AutoPulse
- Prisoner or ward of the state
- Prior application of a mechanical chest compression device
- Randomizing EMS unit arrived <u>></u>16 minutes after emergency call

Determination of Inclusion/Exclusion

- Best estimate of EMS providers
 - No treatment delay
- Some cases excluded after enrollment
 - Except for patient size
 - Retrospective exclusion monitored by DSMB

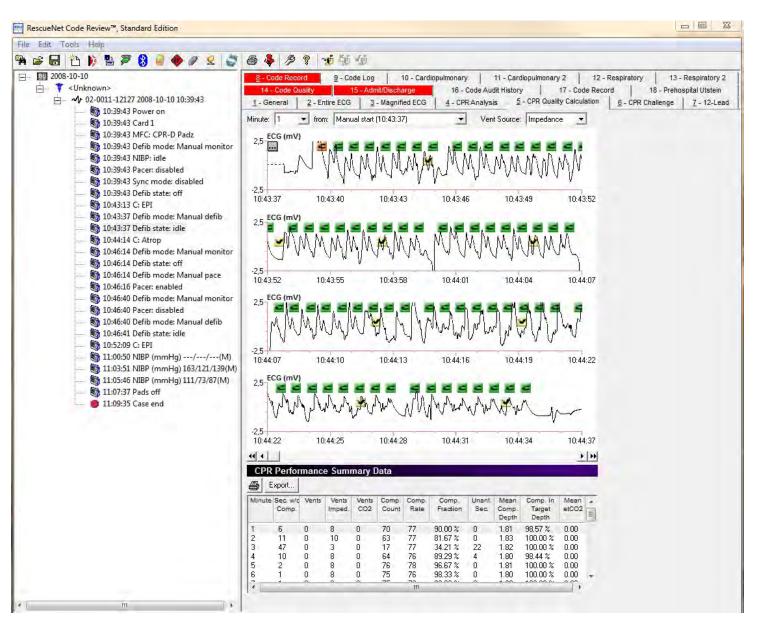
Data Analysis

- Group Sequential Double Triangular Test
- Powered to determine superiority, inferiority, or equivalence
 - Two-sided significance level 5%
 - Power 97.5%
- Equivalence defined as OR 95%
 CI fully between 0.69 and 1.44

Vil bruk av AutoPulse ved hjertestans utenfor sykehus øke hands-off tiden?

Jan-Åge Olsen, MD og PhD-stipendiat, Nasjonalt Kompetansesenter for Prehospital Akuttmedisin (NAKOS), Oslo Universitetssykehus og Universitetet i Oslo, Institutt for klinisk medisin

Impedanse


- En kjent høyfrekvent, lav amplitude, vekselstrøm blir sendt gjennom brystkassen mellom defibrillator-padsene.
- Resulterer i spenning gjennom brystkassen som måles vha Ohms lov
- Ved hjelp av prosessering og programvare kan man få frem kurver som analyseres

Physio-Control Code-Stat™ 9.0

Bruk av elektroniske defibrillatordata

- Physio-Control defibrillatorer: Bruk av transthorakal impedanse validert for kompresjoner.¹ Ikke for ventilasjoner under pågående kompresjoner.²
- Zoll defibrillatorer buker impedanse for å tolke ventilasjoner og akselerometer-data for kompresjoner

Metode

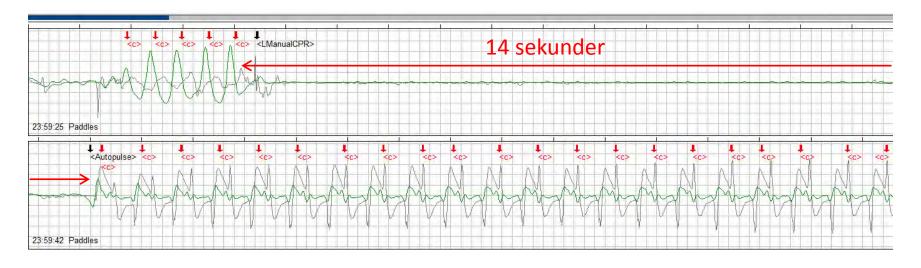
- En annoteringsalgoritme ble utviklet for en enhetlig tilnærming. Denne basert på tidligere erfaring¹ og publiserte metoder for å analysere elektroniske data.
- Pause i kompresjoner definert som mer enn
 1.5 sekunder mellom to kompresjoner.²

¹Stecher FS, Olsen JA, Stickney RE, et al. Transthoracic impedance used to evaluate performance of cardiopulmonary resuscitation during out of hospital cardiac arrest. *Resuscitation*. Dec 2008;79(3):432-437.

²Kramer-Johansen J, Edelson DP, Losert H, et al. Uniform reporting of measured quality of cardiopulmonary resuscitation (CPR). *Resuscitation*. Sep 2007;74(3):406-417.

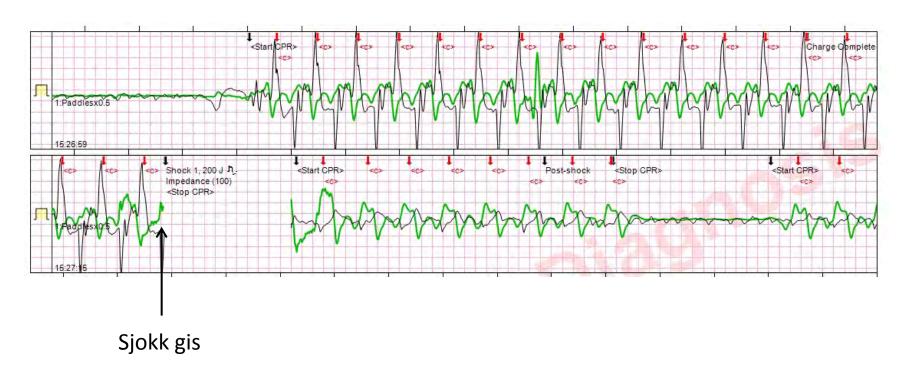
Metode, forts.

- Kontinuerlig EKG og akselerometer- eller impedanse data ble analyser for å bestemme
 - Antall kompresjoner per minutt
 - Antall ventilasjoner per minutt
 - Tiden det tok f\u00far Autopulse var i bruk i iA-HLR-armen
 - Antall sjokk
 - Om det ble defibrillert gjennom kompresjoner
- Defibrillering gjennom kompresjoner minst 50% av defibrilleringene måtte skje mens Autopulse komprimerte

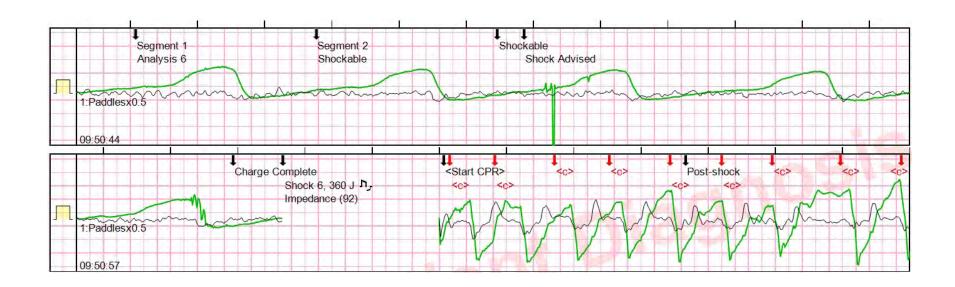


Metode, forts.

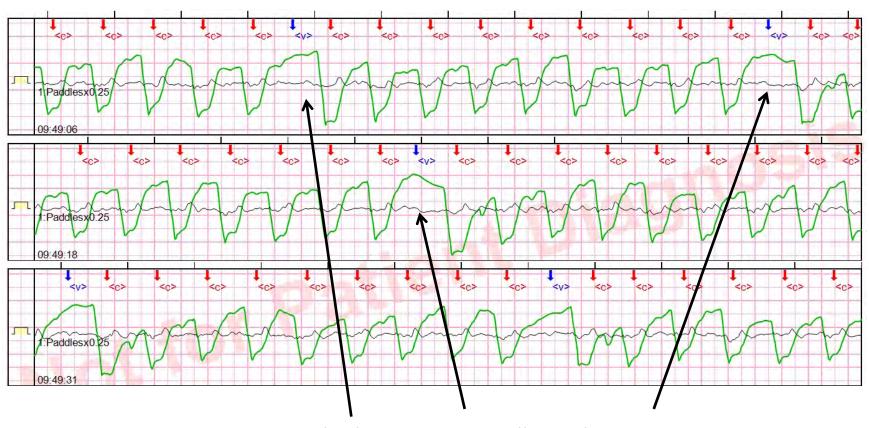
- HLR-fraksjon ble regnet ut for de første 5, 10 og 20 minuttene
- Deskriptiv statistikk og 95% konfidensintervall ble beregnet


Tid fra siste manuelle kompresjon til første Autopulse-kompresjon

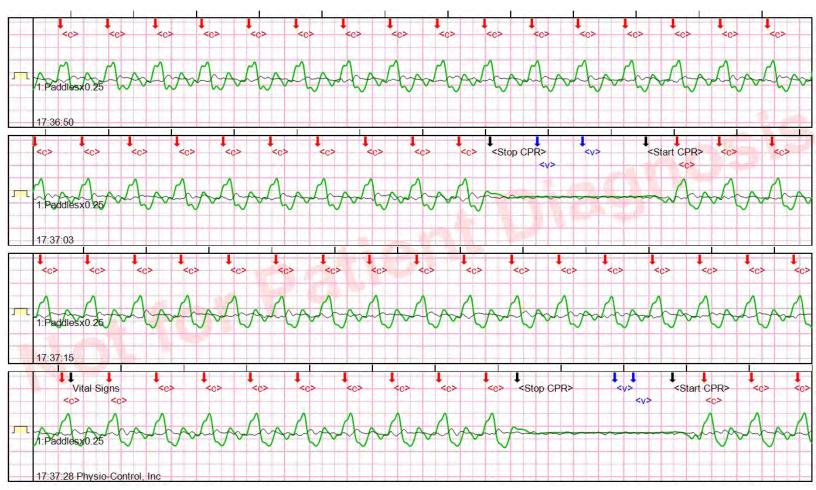
x1.0, 25 mm



Sjokk under pågående HLR



Autopulse startes etter sjokket


Kontinuerlig Autopulse

En litt lenger pause mellom 2 kompresjoner slik at man får ventilert.

Autopulse, 30:2

Resultater

	M-HLR (n=2024)	iA-HLR (n=2017)
Tid fra defibrillator på til første registrerte kompresjon (sekunder)	61 ± 127	65 ± 139
HLR-fraksjon		
Ved 10 minutter	$79,7\% \pm 10,1\%$	$78,5\% \pm 9,4\%$
Ved 20 minutter	80,2% ± 9,1%	80,4% ± 8,3%
Antall kompresjoner per minutt første 10 minutter	89,2 ± 17,4	66,3 ± 10,7
Antall ventilasjoner per minutt første 10 minutter	8,8 ± 4,7	6,8 ± 3,4

Elektroniske data tilgjengelig for 96% av episodene

Resultater

	M-HLR (n=2024)	iA-HLR (n=2017)
Defibrillerte pasienter (%)	40%	38%
Median antall defibrilleringer i episoder med defibrillering	3	2

- Median tid fra siste manuelle kompresjon til første Autopulsekompresjon 29 sekunder (IQR 17-43)
- I 74% av iA-HLR episodene ble det sjokket gjennom kontinuerlig kompresjoner

Diskusjon

	HLR-fraksjon, 5 min	HLR-fraksjon, 10 min
Ong, Manuell arm ¹	$72\% \pm 20\%$	69%
CIRC Manuell arm ^x	$79,0\% \pm 12,3\%$	$79,7\% \pm 10,1\%$
Ong, LDB arm ¹	$60\% \pm 20\%$	69,5%
CIRC iA-HLR ^x	$74,7 \pm 12,7\%$	$78,5\% \pm 9,4\%$

*HLR-fraksjon for første 20 minutter

¹Ong ME, Annathurai A, Shahidah A, et al. Cardiopulmonary resuscitation interruptions with use of a load-distributing band device during emergency department cardiac arrest. *Annals of emergency medicine*. Sep 2010;56(3):233-241.

Begrensninger elektroniske data

- Ingen kompresjonsdybde fra elektroniske data fra Physio-Controls maskiner
- Bare analysert første 20 minutter av episodene for HLR-fraksjon (10 minutter for ventilasjoner)

Problemområder

- Svært mye manuelt arbeid. Softwaren brukt i denne studien er fortsatt under utvikling
- Estimert 10 millioner museklikk bare for selve annoteringene.
- Anta 1 museklikk per sekund: Man vil sitte og klikke i 115 dager (dag og natt)

Takk til

- Lars Wik (hovedveileder)
- Petter Andreas Steen (biveileder)

Results

- 9,068 calls with presumed cardiac arrest
 - 4315 excluded at time of EMS response:
 - 3467 No CPR attempted (Dead On Arrival DOA)
 - 245 Non-cardiac etiology
 - 275 Met exclusion criteria
 - 328 Missed enrollment
 - 522 excluded post enrollment
 - 10.4% M-CPR
 - 11.0% iA-CPR
- 4,231 included subjects
 - 50.4% (2132) M-CPR
 - 49.6% (2099) iA-CPR

General Characteristics by Arm

	M-CPR	iA-CPR
	n=2132	n=2099
Age	65.6 ± 16.0	65.7 ± 16.4
Male gender	61%	61%
Public location of OHCA	13%	14%
Bystander witnessed	37%	37%
Bystander CPR	49%	47%
Shockable initial rhythm	24%	21%
Response interval [min]	6.6 ± 3.0	6.7 ± 2.9
Prehospital epinephrine	91%	93%
Hospital hypothermia*	12%	10%
PTCA/ PCI*	6%	4%
Time from arrival to termination/transport [min]	36.1 ± 14.1	37.3 ± 14.3
Initial rhythm VF/ VT average time from defib on to	3.5 ± 4.0	4.6 ± 4.8
first shock [min]		
Time from defib on to first recorded compression(s)	61 ± 127	65 ± 139

^{*}calculated based on total included in the arm

Results: Adverse Events

- Medical monitor received 34 adverse event reports
 - 28 were determined to be unexpected
 - 26 of those were serious
- DSMB reviewed all 34 cases
 - No new risks identified
 - No safety concerns

Results: Effectiveness Endpoint

- Equivalent survival to hospital discharge
 - Primary Endpoint
 - OR 1.06, 95% CI 0.83 1.37
 - Adjusted for covariates (age, witnessed arrest, initial cardiac rhythm, and enrollment site) and interim analysis
 - Within pre-defined equivalence region (0.69 1.44)

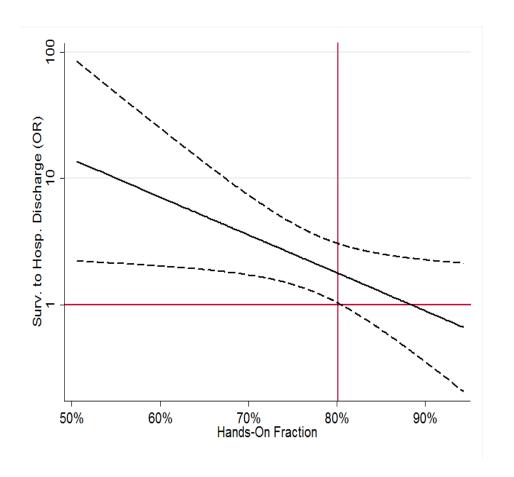
Results: Effectiveness Endpoint

	M-CPR (n=2132)	iA-CPR (n=2099)	Unadjusted OR (95% CI)	Adjusted OR (95% CI)
Survival to Hospital Discharge	11.0%	9.4%	0.84 (0.69 – 1.02)	1.06 (0.83 - 1.37)
Survival to 24h	25.0%	21.8%	0.84	
			(0.72 - 0.96)	
Sustained ROSC	32.3%	28.6%	0.84	
Survival to ED			(0.74 - 0.96)	

Results: Safety Endpoint

- No difference in mRS scores ≤3
 - Adjusted OR 0.80, 95% CI 0.47 1.37 (n.s.)

	M-CPR	iA-CPR
Discharge mRS	(n=233)	(n=196)
Score of 0 -3	48.1%	44.4%
Score of 4 -5	26.2%	25.5%
Unknown score	25.8%	30.1%



Subgroup Analysis

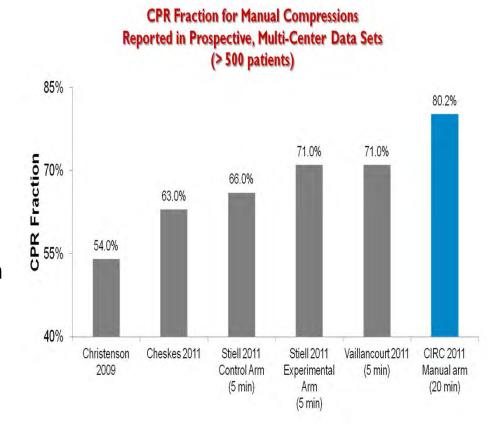
Subgroup Analysis

- Witnessed Arrests with VF/VT
- Survival higher for iA-CPR if CPR fraction <80%
- No survival difference with higher CPR fractions.
- Example: CPR fraction 70% OR
 3.4, 95% CI 2–7.4

Discussion - Methods

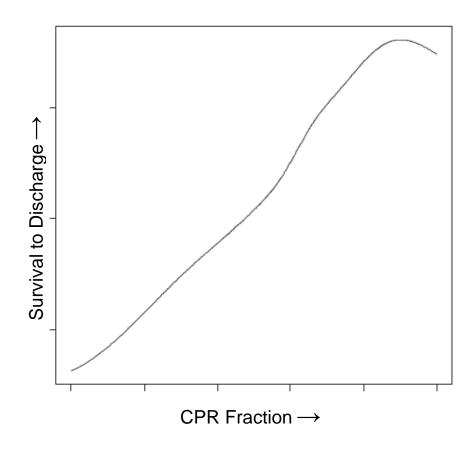
- Three study phases
 - Consistent study practices
- Training and compliance monitoring
 - High CPR fraction in both arms
 - High overall survival rate (10.2%)
- Patient level randomization
 - Equivalent subject characteristics
- Good patient tracking
 - 98% cases with digital ECG data files
 - 12 cases missing primary endpoint data

Discussion - Results


- Equivalence
 - Study powered to show true statistical equivalence.
 - At least as good as high-quality M-CPR
- iA-CPR may solve practical problems
 - CPR in confined spaces
 - CPR with limited number of rescuers
 - CPR during transport

Discussion - Results

CPR fraction


- ~80% CPR Fraction in both arms
 - Higher than most CPR fractions reported for other large RCTs.
- High CPR fraction hard to achieve and maintain
- Sub-analysis demonstrated that at more typical "clinical" CPR fractions iA-CPR may be better than M-CPR

CPR Fraction Predicts Survival

- The Resuscitation Outcomes Consortium (ROC) reports the CPR Fraction to independently predict survival in cardiac arrest patients.
- CPR Fraction was employed as the primary marker of CPR quality during the CIRC trial.

Christenson J. et al. Chest compression fraction determines survival in patients with out-of-hospital ventricular fibrillation. *Circulation*. 2009;120:1241-1247.

Limitations

- Post-resuscitation care not standardized
- Clock Synchronization
- CPR fraction only quality measure
- Arrival at patient side same defibrillator on

Conclusions

- CPR quality was good for both groups
- It is possible to achieve High quality manual CPR that saves lives
- Compared to high quality M-CPR:
 - iA-CPR resulted in statistically equivalent survival to hospital discharge
 - No difference in neurologic status at discharge

