

# Advanced Airway Management Simulation Training in Medical Education: A Systematic Review and Meta-Analysis

Cassie C. Kennedy, MD, FCCP<sup>1</sup>; Eric K. Cannon, MD<sup>2</sup>; David O. Warner, MD<sup>2</sup>; David A. Cook, MD, MHPE, FACP<sup>3</sup>

**Objective:** To perform a systematic review and meta-analysis of the literature on teaching airway management using technology-enhanced simulation.

**Data Sources:** We searched MEDLINE, EMBASE, CINAHL, PsycINFO, ERIC, Web of Science, and Scopus for eligible articles through May 11, 2011.

**Study Selection:** Observational or controlled trials instructing medical professionals in direct or fiberoptic intubation, surgical airway, and/or supraglottic airway using technology-enhanced simulation were included. Two reviewers determined eligibility.

**Data Extraction:** Study quality, instructional design, and outcome data were abstracted independently and in duplicate.

**Data Synthesis:** Of 10,904 articles screened, 76 studies were included ( $n = 5,226$  participants). We used random effects meta-analysis to pool results. In comparison with no intervention, simulation training was associated with improved outcomes for knowledge (standardized mean difference, 0.77 [95% CI, 0.19–1.35];  $n = 7$  studies) and skill (1.01 [0.68–1.34];  $n = 28$ ) but not for behavior (0.52 [−0.30 to 1.34];  $n = 4$ ) or patient outcomes (−0.12 [−0.41 to 0.16];  $n = 4$ ). In comparison with nonsimulation interventions, simulation training was associated with increased

learner satisfaction (0.54 [0.37–0.71];  $n = 2$ ), improved skills (0.64 [0.12–1.16];  $n = 5$ ), and patient outcomes (0.86 [0.12–1.59];  $n = 3$ ) but not knowledge (0.29 [−0.28 to 0.86];  $n = 4$ ). We found few comparative effectiveness studies exploring how to optimize the use of simulation-based training, and these revealed inconsistent results. For example, animal models were found superior to manikins in one study ( $p = 0.004$ ) using outcome of task speed but inferior in another study in terms of skill ratings ( $p = 0.02$ ). Five studies comparing simulators of high versus low technical sophistication found no significant difference in skill outcomes ( $p > 0.31$ ). Limitations of this review include heterogeneity ( $I^2 > 50\%$  for most analysis) and variation in quality among primary studies.

**Conclusions:** Simulation-based airway management curriculum is superior to no intervention and nonsimulation intervention for important education outcomes. Further research is required to fine-tune optimal curricular design. (*Crit Care Med* 2013; 41:00–00)

**Key Words:** airway management; anesthesia; intubation; laryngeal mask airway; medical education; meta-analysis

<sup>1</sup>Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN.

<sup>2</sup>Department of Anesthesiology, Mayo Clinic, Rochester, MN.

<sup>3</sup>Division of General Internal Medicine, Mayo Clinic, Rochester, MN.

Supplemental digital content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal's website (<http://journals.lww.com/ccmjournal>).

Supported, in part, by the Mayo Clinic Foundation for Medical Education and Research (including an award from the Division of General Internal Medicine, Mayo Clinic).

Dr. Kennedy has received travel reimbursements from the American College of Chest Physicians. Dr. Warner is a board member at the American Board of Anesthesiology and has received grant support from the National Institutes of Health and Clearway Minnesota. The remaining authors have disclosed that they do not have any potential conflicts of interest.

For information regarding this article, E-mail: kennedy.cassie@mayo.edu  
Copyright © 2013 by the Society of Critical Care Medicine and Lippincott Williams & Wilkins

DOI: 10.1097/CCM.0b013e31829a721f

Advanced airway management is an essential skill for many healthcare providers. Failure of airway management remains a significant source of morbidity and mortality (1). Training healthcare professionals in airway management is essential to patient safety.

Due to decreased procedural exposure and safety concerns, simulation training has played an increasing role in medical training (2, 3). In general, technology-enhanced simulation improves procedure-related outcomes in comparison with no training or nonsimulation training, including patient safety and learner competence (4–6). Several studies have evaluated the effects of technology-enhanced simulation education for advanced airway management, but reviews on this topic have been limited by nonsystematic identification of eligible studies, absence of evaluation of study quality, and lack of quantitative synthesis of study results (7–10). A comprehensive quantitative synthesis of available evidence would enable educators to make informed decisions regarding the optimal use of simulation-based training for airway management.

We sought to determine the effectiveness of and key features of instructional design for simulation education in advanced airway management training by performing a systematic review and meta-analysis.

## METHODS

### Protocol

This study reflects a planned focused analysis of studies identified in a comprehensive review of simulation-based health education (4); we briefly summarize below the methods specific to this study. Our study adheres to Preferred Reporting Items for Systematic Reviews and Meta-Analyses standards of quality for meta-analyses (11).

### Eligibility Criteria

We included comparative studies that investigated the use of technology-enhanced simulation to teach advanced airway management to health professionals (at any stage in training) regardless of language, publication date, or follow-up duration. We defined technology-enhanced simulation as an educational tool with which the learner physically interacts to mimic airway management, including direct laryngoscopy (DL), fiberoptic intubation (FOI), supraglottic airway management (laryngeal mask airway [LMA] or Combitube), and surgical airway. Multitask courses (e.g., advanced cardiac life support) that explicitly included training for and assessment of airway management were included.

### Search Strategy

We previously published our search strategy in full (4). A research librarian designed a strategy to search MEDLINE, EMBASE, CINAHL, PsycINFO, ERIC, Web of Science, and Scopus for eligible articles (last full search May 11, 2011). In addition, two reviewers examined the reference lists of several reviews of airway management simulation (7–9, 12, 13) and all articles published in *Simulation in Healthcare* and *Clinical Simulation in Nursing*. On February 4, 2013, we performed a focused search for recently published articles (Appendix 1, Supplemental Digital Content 1, <http://links.lww.com/CCM/A711>).

### Study Selection

All aspects of study selection were performed by two independent reviewers with conflicts resolved by consensus, starting with review of titles and abstracts and proceeding to review of the article full text as needed.

### Data Abstraction

We developed, tested, and iteratively refined a data abstraction form and coding document. We abstracted information independently and in duplicate, resolving conflicts by consensus.

We abstracted information on learners, the simulated clinical context (prehospital, hospital, operating room [OR], emergency department, or no clinical context), specific airway management strategy, and features of the intervention (feedback, mastery learning, distribution of training across > 1 d, and intentionally

scripting an error into the training scenario). We abstracted information separately for learning outcomes of satisfaction, knowledge, skills, behaviors with patients, and patient effects. “Skills” were outcomes in simulated settings, distinguished as “time” (time to task completion), “process” (observed proficiency, economy of movements, or minor errors), and “product” (successful task completion or major errors). Outcomes in real clinical settings were similarly classified as “behavior time,” “behavior process,” and “direct effects on patients.”

We evaluated study quality using the Medical Education Research Study Quality Instrument (MERSQI) (14) and an adaptation of the Newcastle-Ottawa Scale (NOS) for cohort studies (15).

### Synthesis

For quantitative synthesis, we grouped studies according to the comparison (no intervention, nonsimulation intervention, or simulation intervention). We planned to use meta-analysis to pool the results of studies comparing simulation training with no intervention or nonsimulation intervention, with subgroup analyses based on study design, trainee level, airway management technique, and selected intervention features (single task vs multitask, single discipline vs multidiscipline, high vs low feedback, and training distributed across 1 vs > 1 d). For studies comparing two simulation interventions, we identified comparison themes by examining the research questions and conceptual frameworks and planned meta-analysis for themes with more than or equal to three studies.

To perform these analyses, we first calculated a standardized mean difference (SMD) (Hedges'  $g$ ) (4). If an article contained insufficient information to calculate a SMD, we contacted authors for information. We used random effects models to pool weighted SMD using SAS 9.1 (SAS Institute, Cary, NC). Statistical significance was defined by a two-sided  $\alpha$  of 0.05, and interpretations of clinical significance emphasized CIs in relation to Cohen's classifications ( $> 0.8$  = large,  $0.5$ – $0.8$  = moderate,  $0.2$ – $0.49$  = small,  $< 0.2$  = negligible) (16). We used funnel plots and Egger's test to evaluate possible publication bias and used trim-and-fill to estimate a revised SMD when indicated. We quantified inconsistency using the  $I^2$  statistic (17). For all meta-analyses, we planned a sensitivity analysis excluding studies that used imprecise data ( $p$  value upper limits or imputed  $SD$ ) to estimate the SMD. We also performed a sensitivity analysis incorporating data from articles identified in our updated search (Supplemental Appendix Table 1, Supplemental Digital Content 2, <http://links.lww.com/CCM/A751>).

For qualitative synthesis, we used a critical synthesis approach, iteratively examining articles for common themes. We summarized these findings using a narrative review.

## RESULTS

### Trial Flow

Our search yielded 10,904 articles with 986 comparative studies of simulation-based training (Fig. 1). From these, we found 77 studies of simulation-based training for advanced airway

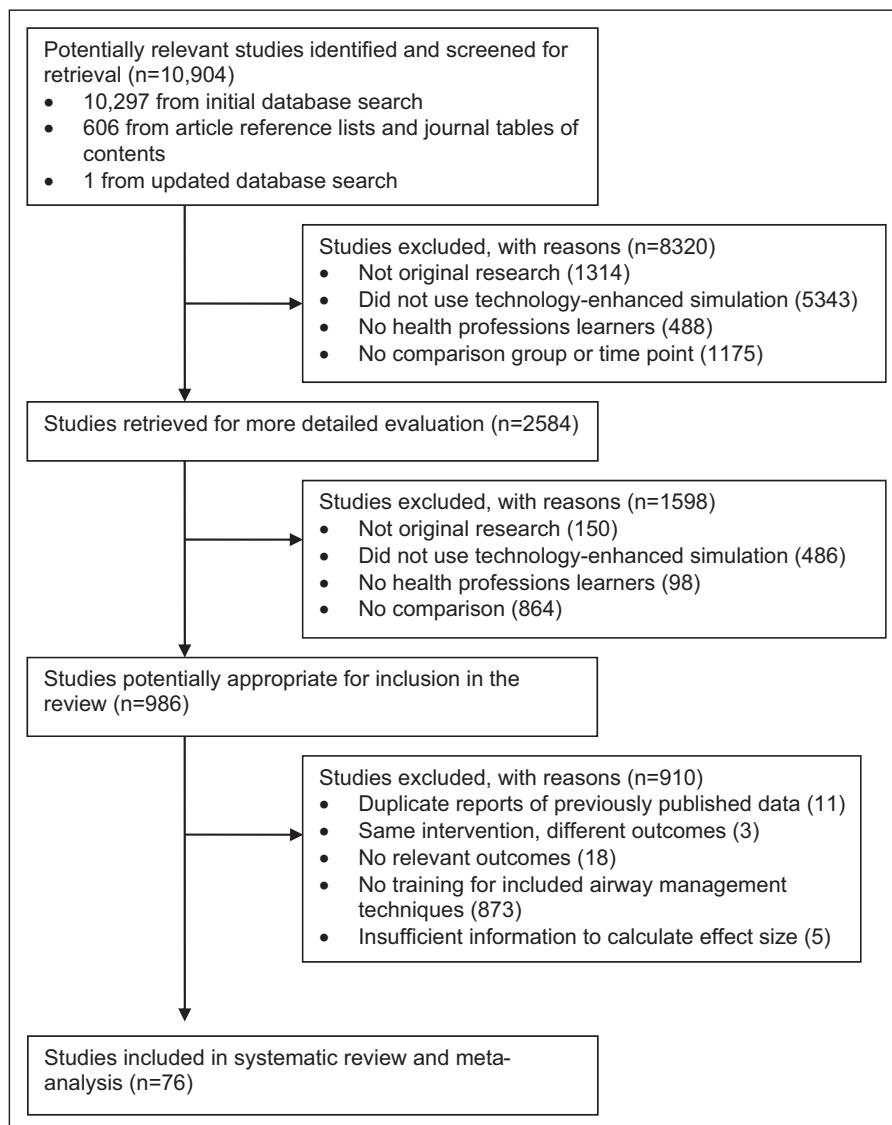
management. We excluded one study that did not report the sample size (author contact unsuccessful). The remaining 76 studies enrolled 5,226 trainees.

## Study Characteristics

**Table 1** summarizes key study characteristics, and **Appendix Table 2** (Supplemental Digital Content 3, <http://links.lww.com/CCM/A752>) reports detailed information for each study. Airway models for training included human patient simulators (HPSs) or manikins, animal models, cadavers, and standardized or anesthetized patients. Forty-three studies provided a scripted or simulated clinical context. Twenty-one studies required interaction with a multidisciplinary team. Four studies introduced an intentional error (i.e., discovery of an esophageal intubation), six studies used mastery learning in their design, and 18 studies distributed training over more than 1 day.

Nine articles reported behavioral outcomes with patients (5 DL, 5 FOI, and 1 supraglottic airway), such as an instructor's

rating of procedural skill with patients, the time to procedural completion, or procedural proficiency (i.e., the number of times the bronchoscope hit the mucosa) (18–26). Sixteen articles reported patient outcomes (12 DL, 5 FOI, 3 supraglottic, and 1 surgical) including procedural success and procedural complications (such dental injury or esophageal intubation) (18–21, 23–34).


## Study Quality

Study quality is summarized in **Table 2**. Thirty-five studies were randomized. Twenty-two studies reported data on fewer than 75% of enrolled participants (loss to follow-up not described). At least one outcome was determined objectively in 64 studies, but only 34 studies employed a blinded outcome.

## Synthesis: Comparison With No Intervention

In comparison with no intervention, simulation training for airway management was associated with large statistically significant positive effects on skills. Twenty-eight studies (1,672 learners) measured skill outcomes, with a large pooled SMD of 1.01 (95% CI, 0.69–1.34;  $p < 0.0001$ ) (**Fig. 2**). We found large inconsistency with  $I^2 = 94\%$ . Individual SMDs ranged from -0.29 to 3.85, although only two of 28 studies showed a negative SMD. To explore this inconsistency, we conducted planned subgroup analyses (**Fig. 3**). We found large pooled SMDs among all learner subgroups and for all airway management tasks except FOI, for which the SMD of 0.66 is considered moderate. We found no difference in skill outcome in subgroup analyses according to duration of training (1 vs  $> 1$  d), feedback (high vs low), multitask (vs single task) design, or multidisciplinary (vs individual) training ( $p_{interaction} \geq 0.19$  for all). The funnel plot was visually asymmetric; assuming this suggests publication bias, trim-and-fill analyses revealed a revised SMD of 0.87 (0.42–1.20). Sensitivity analysis excluding six studies with imprecise SMD estimations yielded a virtually identical SMD (1.03).

Ten studies assessed time skills (i.e., time to complete the task), seven studies assessed knowledge outcomes, four studies assessed behaviors in clinical practice, and four studies assessed direct patient outcomes. In all but the last analysis, the SMD was moderate or large and favored training, and inconsistency was high ( $I^2 \geq 79\%$ ) (**Fig. 2**). Funnel plots for outcomes of knowledge and



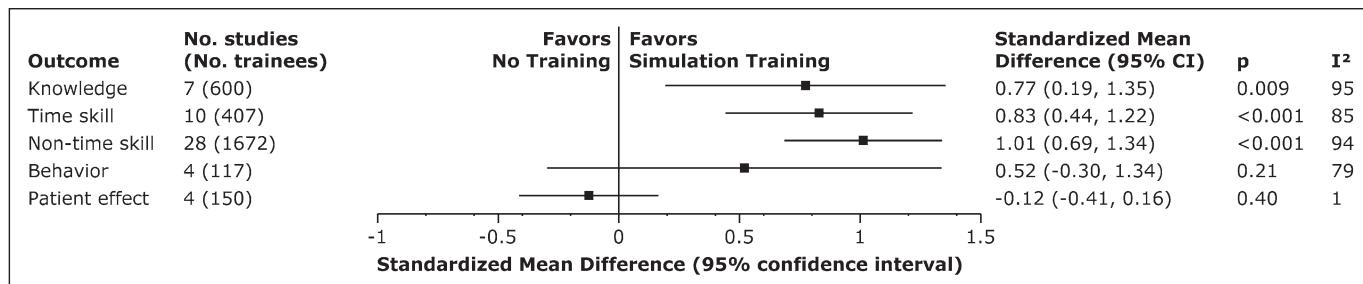
**Figure 1.** Trial flow of study selection, including stage and reason for exclusion.

**TABLE 1. Key Features of Studies Included in Systematic Review of Airway Management Simulation Training**

| Study Characteristic                                                  | Level                                                                | No. of Studies<br>(No. of Participants <sup>a</sup> ) |
|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------|
| All studies                                                           |                                                                      | 76 (5,226) <sup>b</sup>                               |
| Study design                                                          |                                                                      | 51 (3,654)                                            |
|                                                                       | Two groups                                                           | 51 (3,654)                                            |
|                                                                       | One group (pretest-posttest)                                         | 25 (1,572)                                            |
| Group allocation                                                      | Randomized                                                           | 35 (2,322)                                            |
| Comparison                                                            |                                                                      | 39 (2,451)                                            |
|                                                                       | No intervention                                                      | 39 (2,451)                                            |
|                                                                       | Nonsimulation training                                               | 10 (683)                                              |
|                                                                       | Alternate simulation training                                        | 29 (2,582)                                            |
| Participants <sup>c</sup>                                             | Medical students                                                     | 18 (1,134)                                            |
|                                                                       | Physicians in postgraduate training                                  | 31 (1,149)                                            |
|                                                                       | Physicians in practice                                               | 20 (750)                                              |
|                                                                       | Nurses in practice                                                   | 11 (249)                                              |
|                                                                       | Nursing students                                                     | 3 (388)                                               |
|                                                                       | Emergency medical technicians or students                            | 18 (912)                                              |
|                                                                       | Other/ambiguous/mixed                                                | 12 (588)                                              |
| Approach <sup>c</sup>                                                 | Direct laryngoscopy                                                  | 48 (4,006)                                            |
|                                                                       | Fiberoptic intubation                                                | 18 (789)                                              |
|                                                                       | Nasal/blind airway                                                   | 1 (33)                                                |
|                                                                       | Surgical airway                                                      | 18 (1,488)                                            |
|                                                                       | Supraglottic                                                         | 14 (1,291)                                            |
| Environmental or scripted setting of simulation scenario <sup>c</sup> | Emergency department                                                 | 6 (624)                                               |
|                                                                       | Hospital (includes ICU)                                              | 4 (367)                                               |
|                                                                       | Operating room                                                       | 26 (1,108)                                            |
|                                                                       | Prehospital                                                          | 7 (849)                                               |
|                                                                       | No clinical context                                                  | 34 (2,544)                                            |
| Outcomes <sup>b</sup>                                                 | Satisfaction                                                         | 6 (454)                                               |
|                                                                       | Knowledge                                                            | 14 (1,436)                                            |
|                                                                       | Skill: time                                                          | 19 (995)                                              |
|                                                                       | Skill: process                                                       | 41 (2,717)                                            |
|                                                                       | Skill: product                                                       | 11 (1,007)                                            |
|                                                                       | Behavior: time                                                       | 4 (101)                                               |
|                                                                       | Behavior: process                                                    | 8 (308)                                               |
|                                                                       | Patient effects                                                      | 13 (757)                                              |
| Quality                                                               | Newcastle-Ottawa Scale $\geq$ 4 points                               | 30 (1,996)                                            |
|                                                                       | Medical Education Research Study Quality Instrument $\geq$ 12 points | 45 (3,089)                                            |

<sup>a</sup>Numbers reflect the number enrolled, except for outcomes which reflect number of participants who provided observations for analysis.<sup>b</sup>One additional study did not report the number of participating trainees (data not included in this table).<sup>c</sup>The number of studies and trainees in some subgroups (summing across rows or columns) may sum to more than the number for all studies because several studies included  $> 1$  comparison arm,  $> 1$  trainee group, fit within  $> 1$  training task or scenario, or reported multiple outcomes.See Appendix Table 1 (Supplemental Digital Content 2, <http://links.lww.com/CCM/A751>) for details on individual studies.

**TABLE 2. Quality of Studies Included in a Systematic Review of Airway Management Simulation Training**


| Scale Item                                                       | Subscale (Points if Present)                                                  | No. Present (%)               |
|------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------|
| Medical Education Research Study Quality Instrument <sup>a</sup> |                                                                               |                               |
| Study design (maximum 3)                                         | 1 group pre-post (1.5)<br>Observational 2 group (2)<br>Randomized 2 group (3) | 25 (33)<br>16 (21)<br>35 (46) |
| Sampling: number of institutions (maximum 1.5)                   | 1 (0.5)<br>2 (1)<br>> 2 (1.5)                                                 | 65 (86)<br>2 (3)<br>9 (12)    |
| Sampling: follow-up (maximum 1.5)                                | < 50% or not reported (0.5)<br>50–74% (1)<br>≥ 75% (1.5)                      | 20 (26)<br>2 (3)<br>54 (71)   |
| Type of data: outcome assessment (maximum 3)                     | Subjective (1)<br>Objective (3)                                               | 12 (16)<br>64 (84)            |
| Validity evidence (maximum 3)                                    | Content (1)<br>Internal structure (1)<br>Relations to other variables (1)     | 19 (25)<br>20 (26)<br>5 (7)   |
| Data analysis: appropriate (maximum 1)                           | Appropriate (1)                                                               | 67 (88)                       |
| Data analysis: sophistication (maximum 2)                        | Descriptive (1)<br>Beyond descriptive analysis (2)                            | 5 (7)<br>71 (93)              |
| Highest outcome type (maximum 3)                                 | Reaction (satisfaction) (1)<br>Knowledge, skills (1.5)<br>Behaviors (2)       | 2 (3)<br>57 (75)<br>4 (5)     |
| Patient/healthcare outcomes (3)                                  |                                                                               | 13 (17)                       |
| Newcastle-Ottawa Scale (modified) <sup>b</sup>                   |                                                                               |                               |
| Representativeness of sample                                     | Present (1)                                                                   | 20 (26)                       |
| Comparison group from same community                             | Present (1)                                                                   | 50 (66)                       |
| Comparability of comparison cohort, criterion A <sup>c</sup>     | Present (1)                                                                   | 37 (49)                       |
| Comparability of comparison cohort, criterion B <sup>c</sup>     | Present (1)                                                                   | 22 (29)                       |
| Blinded outcome assessment                                       | Present (1)                                                                   | 34 (45)                       |
| Follow-up high or those lost described                           | Present (1)                                                                   | 57 (75)                       |

<sup>a</sup>Mean (sd) Medical Education Research Study Quality Instrument score was 12.0 (2.0); median (range) was 12 (7–16).<sup>b</sup>Mean (sd) Newcastle-Ottawa Scale score was 2.9 (1.7); median (range) was 3 (0–6).<sup>c</sup>Comparability of cohorts criterion A was present if the study 1) was randomized or 2) controlled for a baseline learning outcome; criterion B was present if 1) a randomized study concealed allocation or 2) an observational study controlled for another baseline trainee characteristic.

behavior were visually symmetric, and Egger's test did not suggest publication bias. The funnel plot for time outcome was visually asymmetric; assuming this suggests publication bias, trim-and-fill analyses revealed a revised SMD of 0.81 (0.42–1.20). The pooled SMD for four studies evaluating effects on patients was negligible and not statistically significant SMD  $-0.12$  ( $-0.41$  to  $0.16$ ,  $p = 0.4$ ) (24, 25, 31, 34). The funnel plot was visually asymmetric. Assuming this suggests

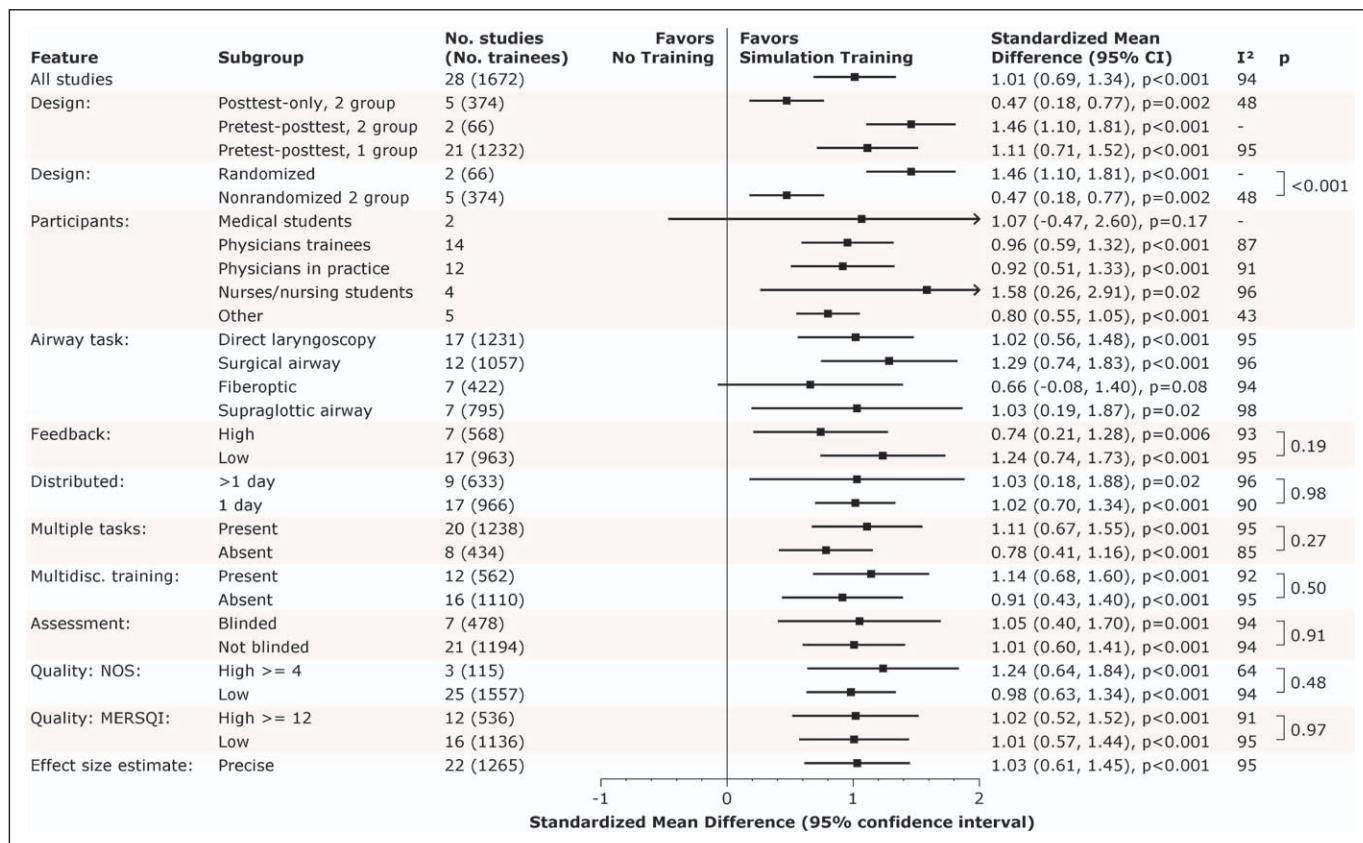
publication bias, trim-and-fill analyses revealed a revised SMD of  $-0.04$  ( $-0.38$  to  $0.29$ ).

Sensitivity analysis including data from seven recently published articles did not appreciably change results for time and process skills, but for behavior process the revised SMD (adding one new study) was slightly lower (0.31 [-0.36 to 0.98]) (Appendix Table 1, Supplemental Digital Content 2, <http://links.lww.com/CCM/A751>).

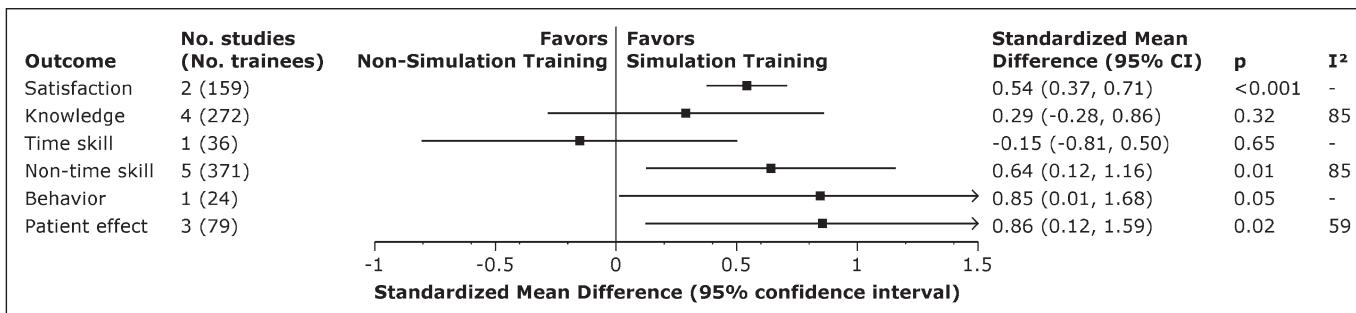


**Figure 2.** Outcomes of studies comparing simulation education with no intervention. The first column lists outcomes (knowledge, time skill, nontime skill, behavior, and patient effect), whereas the second column lists the number of studies and trainees contributing data to each analysis. The forest plot demonstrates point estimate of standardized mean difference (SMD; *black box*) surrounded by 95% CI (*line*). Positive SMDs favor the simulation intervention. *p* values reflect comparison of the estimated effect versus no effect. All SMDs reported represent a meta-analysis of pooled effect.

### Synthesis: Comparison With Nonsimulation Instruction


A total of 10 studies compared simulation training with non-simulation instruction, such as OR ( $n = 3$ ) (28, 35, 36), self-study ( $n = 1$ ) (37), video ( $n = 3$ ) (26, 38, 39), and lecture/discussion ( $n = 3$ ) (21, 40, 41). The pooled results of these studies are shown in Figure 4. Most analyses demonstrated an association between simulation training and improved outcomes; this association was moderate for satisfaction 0.54 (0.37–0.71,  $n = 2$  studies) and nontime skills 0.64 (0.12–1.16,  $n = 5$ ) and large for behaviors in practice 0.85 (0.01–1.68,

$n = 1$ ) and patient outcomes 0.86 (0.12–1.59,  $n = 3$ ). Neither knowledge ( $n = 4$ ) nor time skills ( $n = 1$ ) outcomes demonstrated a statistically significant difference.


### Synthesis: Comparison of Simulation Versus Simulation Training

Twenty-nine studies compared simulation versus alternate simulation intervention. These studies offer insight to assist educators in optimizing curricular design and retention of skills.

**Choice of Educational Model.** Thirteen studies compared one type of simulation model with another. In these comparisons,



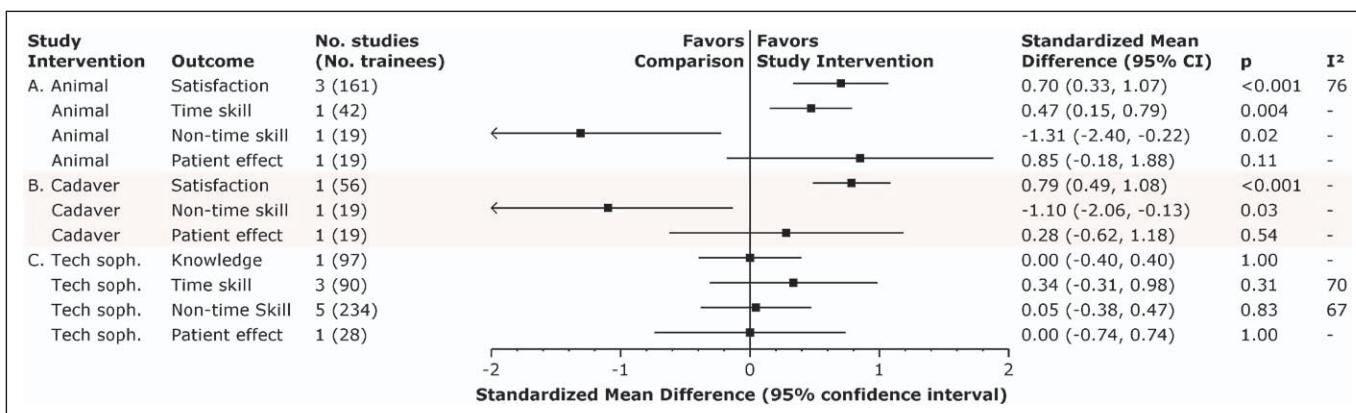
**Figure 3.** Subgroup analysis of skill outcomes for the studies comparing simulation with no intervention (28 studies total). Positive standardized mean differences (*black box*) favor the simulation intervention. *p* values reflect statistical tests exploring the differential effect of simulation training (i.e., interaction) for study subgroups. Participant and task groupings are not mutually exclusive, and thus, no statistical comparison is made, and the number of trainees is not reported. Some features could not be discerned for all studies; hence, some numbers do not add to 28. Multidisc. training = multidisciplinary training, NOS = Newcastle-Ottawa Scale, MERSQI = Medical Education Research Study Quality Instrument.



**Figure 4.** Outcomes of studies comparing simulation education with nonsimulation intervention. See Figure 2 for explanatory notes. Standardized mean differences (SMDs; *black box*) for those outcomes listing more than two included studies are pooled effects by meta-analysis (satisfaction, knowledge, nontime skill, and patient effect). Others represent the point estimate and CI reported in a single study. Positive SMDs favor simulation training, whereas negative values favor nonsimulation intervention.

learners reported higher satisfaction with biologic (animal and cadaver) models over synthetic models, but data for skill, behavior, or patient outcomes did not substantiate this preference. Four studies compared animal with manikin models. Two studies (30, 42) explored outcomes of time skills, nontime skills, and patient effects, with inconsistent results (Fig. 5A). Meta-analysis of three studies reporting learner satisfaction favored the animal model 0.70 (0.33–1.07) (42–44).

Four studies examined use of cadaver models (29, 30, 33, 45) (Fig. 5B). Three studies compared cadaver versus manikin-based training using outcomes (one study each) of satisfaction, nontime skills, and patient effects, with inconsistent results (Fig. 5B) (29, 30, 45). In the fourth study, outcomes improved when HPSs were added to cadaver-based training (33).


Synthetic simulators vary dramatically in their ability to interact with the user and mimic physiology (8). Five studies compared synthetic simulator technology using a high sophistication model versus a low sophistication model (e.g., HPS vs corrugated tubing for cricothyrotomy, or manikin with built-in sensors vs no-sensor manikin for DL) and found no significant association with nontime skill 0.05

(−0.38 to 0.47) or time skill 0.34 (−0.31 to 0.98) outcomes (Fig. 5C) (20, 23, 46–48).

Studies also examined the effects of blending simulation training with encounters with actual or standardized patients. Two studies compared OR plus simulation training to simulation training alone and found no difference in measured outcomes (27, 49). Two studies incorporated standardized patients to assist with the realism of the scripted scenario but found no benefit (43, 50).

**Other Curricular Innovations Studied.** Efforts to enhance learner engagement appeared to be associated with improved outcomes. For example, when the student directed the scenario (compared with observing) or needed to solve the task without assistance from an instructor (i.e., self-regulated learning, compared with instructor directed), the outcomes were better (51, 52). Similarly, learners who engaged in mental imagery and kinesiology (practice with surrogate tools) improved cricothyrotomy skills compared with standard Advanced Trauma Life Support training (53).

**Skill Retention.** Six studies focused on how to improve skill retention but were too dissimilar for meta-analysis (32, 39, 52, 54–56). In initial course design, self-regulated learning



**Figure 5.** Outcomes of studies comparing alternate simulation models. The first column lists study intervention model type: A, animal model versus manikin (four distinct studies); B, cadaver model versus manikin (three distinct studies); and C, higher technical sophistication (Tech soph.) versus lower sophistication (five distinct studies). Second column lists the outcome, and the third column lists the number of studies (number of trainees) represented in each analysis. Standardized mean differences (SMDs; *black box*) for those outcomes listing more than two included studies are pooled effects by meta-analysis. Others represent the point estimate and CI reported in a single study. Positive SMDs favor the study intervention listed in the first column; negative values favor the comparison intervention (i.e., manikin for animal and cadaver, less technologically sophisticated for Tech soph.).

improved skill retention for DL (compared with instructor-directed training) (52). However, a so-called four-stage curriculum (demonstration, formulation, deconstruction, and performance) compared with a two-stage model (deconstruction and performance) showed no difference in skill retention (56). Several interventions subsequent to the initial course were associated with improved skill retention, including refresher courses with practice, self-directed practice, and periodic evaluation with feedback and ongoing practice (32, 39, 54, 55).

## DISCUSSION

Simulation for airway management training is associated with improved outcomes compared with no intervention and nonsimulation intervention. This general finding held true for specific training tasks, including surgical airway, DL, FOI, and supraglottic airway placement. In addition, simulation was associated with increased satisfaction, nontime skill, behaviors, and patient effects compared with nonsimulation interventions.

In studies comparing two simulation interventions, learners' satisfaction was higher with biologic (animal and cadaver) compared with synthetic manikin models, but results were inconsistent for other learning outcomes. Interventions with enhanced learner engagement, such as self-regulated learning or learner-directed scenarios, improved outcomes compared with more passive learner roles. Skill retention over time was enhanced by providing opportunities for ongoing practice with or without periodic evaluation with feedback, refresher courses, and self-regulated learning. We found studies evaluating models of high versus low sophistication, OR practice in addition to simulation, and use of standardized patients, but study results do not permit firm conclusions.

### Comparison With Previous Reviews

To the 10 eligible studies identified in an earlier systematic review of airway management (7), the present review contributes 66 additional studies, as well as a meta-analytic synthesis of study results. These results are consistent with prior meta-analyses examining the efficacy of medical simulation for healthcare professional education in general (4, 57) and in focused tasks (58, 59). Our review also builds on a previous review of simulation-based instructional design by investigating educational best practices specific to airway training (60).

Measurement of patient outcomes has been the subject of recent discussions (61) and systematic review (62). In the present review, direct patient outcomes were measured in 16 studies and patient-associated behaviors were measured in nine studies. The diversity of patient-related outcomes was limited and included procedural time, proficiency, success, or complications.

### Limitations

Our study has limitations. We limited our focus to published studies of DL, FOI, supraglottic airway, and surgical airway

and therefore excluded studies that involved training for other airway tasks (such as bag-valve mask). As with any systematic review, the quality of underlying studies constrains the strength of the conclusions. In this study, loss to follow-up and lack of blinding in outcome assessment may have introduced bias. Also, some educators may disagree with our decision to combine some airway tasks for meta-analysis, such as combining LMA with Combitube into "supraglottic." Although different procedures, we feel they are similar enough to warrant these categorizations for the purpose of meta-analysis. Finally, primary studies offered a limited spectrum of patient-related outcomes.

We found substantial inconsistency in meta-analysis, and subgroup analyses did little to explain this between-study heterogeneity. This likely represents the underlying diversity of learners, instructors, instructional and study designs, and outcomes present in the primary studies. However, in most cases, these differences reflected variation in the magnitude but not in the direction of the effect (i.e., nearly all simulation-based interventions found a benefit in comparison with no intervention). Finally, we did not explore the cost of training, although we did address this issue in a previous review (63).

## CONCLUSIONS

### Implications for Education

Educators face many choices when designing a curricula—whether to use lecture, video, web-based teaching, and/or simulation. Our findings have substantial implications for educators and researchers. First, educators designing airway education courses can be confident that simulation is effective in comparison with no intervention for most measured outcomes. It also appears to be more effective than nonsimulation education (e.g., video, lecture, self-study, and OR training) for many educational outcomes. Second, simulation was associated with higher learner satisfaction compared with nonsimulation interventions.

Educators designing simulation curricula face further choices, such as which model(s) to use, how to ensure learners retain the skills, and how to provide feedback. This review begins to answer such questions. Learner satisfaction increased with biologic models. Such preferences may be important in designing curriculum, although evidence is presently lacking with regard to the impact on other learning outcomes. Formal training in the OR in addition to simulation training was not associated with benefit. Although evidence is limited, this finding is of considerable practical import given the substantial commitment by OR personnel and potential safety risks incurred by such training. Addition of standardized patients to airway management training likewise does not appear to be beneficial. Finally, curricula that include course repetition, ongoing practice with or without evaluation with feedback, and use of self-regulated learning appear effective in airway management skill retention and should be incorporated for those requiring skills maintenance.

## Implications for Future Research

Existing evidence supports the use of simulation in comparison with no intervention and nonsimulation interventions. Data are limited with respect to the spectrum of patient-measured outcomes, and further work is necessary to determine how to effectively implement training with direct benefits to patient care (64). In addition, exploring which aspects may benefit from self-regulated learning merits further study as a means to decrease costs by efficiently using instructor time (65). Refresher courses appear beneficial, but we need further clarity on how many and for how long. The best way to determine these answers is via comparisons of effectiveness of different simulation methods. For example, some studies attempted to situate the training in an authentic clinical context as shaped by the script, the superficial appearance of the training device, or the surrounding environment, yet the actual influence of such context modifications remains unknown.

## ACKNOWLEDGMENTS

We thank Ryan Brydges, Stan Hamstra, Rose Hatala, Jason Szostek, Amy Wang, and Pat Erwin for assistance with study selection and data abstraction.

## REFERENCES

1. Cheney FW: The American Society of Anesthesiologists Closed Claims Project: What have we learned, how has it affected practice, and how will it affect practice in the future? *Anesthesiology* 1999; 91:552–556
2. Kohn LT, Corrigan JM, Donaldson MS (Eds): *To Err Is Human: Building a Safer Health System*. Washington, DC, National Academy Press, 2000
3. Mason RA: Education and training in airway management. *Br J Anaesth* 1998; 81:305–307
4. Cook DA, Hatala R, Brydges R, et al: Technology-enhanced simulation for health professions education: A systematic review and meta-analysis. *JAMA* 2011; 306:978–988
5. Cook DA, Brydges R, Hamstra SJ, et al: Comparative effectiveness of technology-enhanced simulation versus other instructional methods: A systematic review and meta-analysis. *Simul Healthc* 2012; 7:308–320
6. McGaghie WC, Draycott TJ, Dunn WF, et al: Evaluating the impact of simulation on translational patient outcomes. *Simul Healthc* 2011; 6(Suppl):S42–S47
7. Lucisano KE, Talbot LA: Simulation training for advanced airway management for anesthesia and other healthcare providers: A systematic review. *AANA J* 2012; 80:25–31
8. Cumin D, Merry AF: Simulators for use in anaesthesia. *Anaesthesia* 2007; 62:151–162
9. Goldmann K, Ferson DZ: Education and training in airway management. *Best Pract Res Clin Anaesthesiol* 2005; 19:717–732
10. Schaefer JJ 3rd: Simulators and difficult airway management skills. *Paediatr Anaesth* 2004; 14:28–37
11. Moher D, Liberati A, Tetzlaff J, et al; PRISMA Group: Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *Ann Intern Med* 2009; 151:264–269
12. Bressan F, Buti G, Boncinelli S: Medical simulation in anesthesiology training. *Minerva Anestesiol* 2007; 73:1–11
13. Stringer KR, Bajenov S, Yentis SM: Training in airway management. *Anaesthesia* 2002; 57:967–983
14. Reed DA, Cook DA, Beckman TJ, et al: Association between funding and quality of published medical education research. *JAMA* 2007; 298:1002–1009
15. Cook DA, Levinson AJ, Garside S, et al: Internet-based learning in the health professions: A meta-analysis. *JAMA* 2008; 300:1181–1196
16. Cohen J: *Statistical Power Analysis for the Behavioral Sciences*. Second Edition. Hillsdale, NJ, Lawrence Erlbaum and Associates, 1988
17. Higgins JP, Thompson SG, Deeks JJ, et al: Measuring inconsistency in meta-analyses. *BMJ* 2003; 327:557–560
18. Abrahamsen S, Denison JS, Wolf RM: Effectiveness of a simulator in training anesthesiology residents. *J Med Educ* 1969; 44:515–519
19. Smith JE, Fenner SG, King MJ: Teaching fiberoptic nasotracheal intubation with and without closed circuit television. *Br J Anaesth* 1993; 71:206–211
20. From RP, Pearson KS, Albanese MA, et al: Assessment of an interactive learning system with “sensorized” manikin head for airway management instruction. *Anesth Analg* 1994; 79:136–142
21. Naik VN, Matsumoto ED, Houston PL, et al: Fiberoptic orotracheal intubation on anesthetized patients: Do manipulation skills learned on a simple model transfer into the operating room? *Anesthesiology* 2001; 95:343–348
22. Rowe R, Cohen RA: An evaluation of a virtual reality airway simulator. *Anesth Analg* 2002; 95:62–66
23. Chandra DB, Savoldelli GL, Joo HS, et al: Fiberoptic oral intubation: The effect of model fidelity on training for transfer to patient care. *Anesthesiology* 2008; 109:1007–1013
24. Gómez LM, Calderón M, Sáenz X, et al: Effect and benefit of clinical simulation in the development of psychomotor competencies in anesthesia: A random double-blind clinical trial [Spanish]. *Rev Colomb Anestesiol* 2008; 36:93–107
25. Nishisaki A, Donoghue AJ, Colborn S, et al: Effect of just-in-time simulation training on tracheal intubation procedure safety in the pediatric intensive care unit. *Anesthesiology* 2010; 113:214–223
26. Campos JH, Hallam EA, Ueda K: Training in placement of the left-sided double-lumen tube among non-thoracic anaesthesiologists: Intubation model simulator versus computer-based digital video disc, a randomised controlled trial. *Eur J Anaesthesiol* 2011; 28:169–174
27. Stewart RD, Paris PM, Pelton GH, et al: Effect of varied training techniques on field endotracheal intubation success rates. *Ann Emerg Med* 1984; 13:1032–1036
28. Ovassapian A, Yelich SJ, Dykes MH, et al: Learning fiberoptic intubation: Use of simulators v. traditional teaching. *Br J Anaesth* 1988; 61:217–220
29. Stratton SJ, Kane G, Gunter CS, et al: Prospective study of manikin-only versus manikin and human subject endotracheal intubation training of paramedics. *Ann Emerg Med* 1991; 20:1314–1318
30. Trooskin SZ, Rabinowitz S, Eldridge C, et al: Teaching endotracheal intubation using animals and cadavers. *Prehosp Disaster Med* 1992; 7:179–182
31. Hosking EJ: Does practising intubation on a manikin improve both understanding and clinical performance of the task by medical students? *Anaesth Points West* 1998; 31:25–28
32. Rumball C, Macdonald D, Barber P, et al: Endotracheal intubation and esophageal tracheal Combitube insertion by regular ambulance attendants: A comparative trial. *Prehosp Emerg Care* 2004; 8:15–22
33. Davis DP, Buono C, Ford J, et al: The effectiveness of a novel, algorithm-based difficult airway curriculum for air medical crews using human patient simulators. *Prehosp Emerg Care* 2007; 11:72–79
34. Lubin J, Carter R: The feasibility of daily mannequin practice to improve intubation success. *Air Med J* 2009; 28:195–197
35. Hall RE, Plant JR, Bands CJ, et al: Human patient simulation is effective for teaching paramedic students endotracheal intubation. *Acad Emerg Med* 2005; 12:850–855
36. Hallikainen J, Väistönen O, Randell T, et al: Teaching anaesthesia induction to medical students: Comparison between full-scale simulation and supervised teaching in the operating theatre. *Eur J Anaesthesiol* 2009; 26:101–104
37. Modell JH, Cantwell S, Hardcastle J, et al: Using the human patient simulator to educate students of veterinary medicine. *J Vet Med Educ* 2002; 29:111–116
38. Morgan PJ, Cleave-Hogg D, McIlroy J, et al: Simulation technology: A comparison of experiential and visual learning for undergraduate medical students. *Anesthesiology* 2002; 96:10–16

39. Youngquist ST, Henderson DP, Gausche-Hill M, et al: Paramedic self-efficacy and skill retention in pediatric airway management. *Acad Emerg Med* 2008; 15:1295–1303

40. Multak N, Euliano T, Gabrielli A, et al: Human patient simulation: A preliminary report of an innovative training tool for physician assistant education. *Perspect Physician Assist Educ* 2002; 13:103–105

41. Wenk M, Waurick R, Schotes D, et al: Simulation-based medical education is no better than problem-based discussions and induces misjudgment in self-assessment. *Adv Health Sci Educ Theory Pract* 2009; 14:159–171

42. Cummings AJ, Getz MA: Evaluation of a novel animal model for teaching intubation. *Teach Learn Med* 2006; 18:316–319

43. Deutsch ES, Christenson T, Curry J, et al: Multimodality education for airway endoscopy skill development. *Ann Otol Rhinol Laryngol* 2009; 118:81–86

44. Cho J, Kang GH, Kim EC, et al: Comparison of manikin versus porcine models in cricothyrotomy procedure training. *Emerg Med J* 2008; 25:732–734

45. Yang JH, Kim YM, Chung HS, et al: Comparison of four manikins and fresh frozen cadaver models for direct laryngoscopic orotracheal intubation training. *Emerg Med J* 2010; 27:13–16

46. Friedman Z, You-Ten KE, Bould MD, et al: Teaching lifesaving procedures: The impact of model fidelity on acquisition and transfer of cricothyrotomy skills to performance on cadavers. *Anesth Analg* 2008; 107:1663–1669

47. Martin KM, Larsen PD, Segal R, et al: Effective nonanatomical endoscopy training produces clinical airway endoscopy proficiency. *Anesth Analg* 2004; 99:938–944

48. Wong W, Kedarisetty S, Delson N, et al: The effect of cross-training with adjustable airway model anatomies on laryngoscopy skill transfer. *Anesth Analg* 2011; 113:862–868

49. Roberts I, Allsop P, Dickinson M, et al: Airway management training using the laryngeal mask airway: A comparison of two different training programmes. *Resuscitation* 1997; 33:211–214

50. Miotto HC, Couto BR, Goulart EM, et al: Advanced Cardiac Life Support Courses: Live actors do not improve training results compared with conventional manikins. *Resuscitation* 2008; 76:244–248

51. Ti LK, Tan GM, Khoo SG, et al: The impact of experiential learning on NUS medical students: Our experience with task trainers and human-patient simulation. *Ann Acad Med Singapore* 2006; 35:619–623

52. Ti LK, Chen FG, Tan GM, et al: Experiential learning improves the learning and retention of endotracheal intubation. *Med Educ* 2009; 43:654–660

53. Bathalon S, Dorian D, Darveau S, et al: Cognitive skills analysis, kinesiology, and mental imagery in the acquisition of surgical skills. *J Otolaryngol* 2005; 34:328–332

54. Hein C, Owen H, Plummer J: A training program for novice paramedics provides initial laryngeal mask airway insertion skill and improves skill retention at 6 months. *Simul Healthc* 2010; 5:33–39

55. Kovacs G, Bullock G, Ackroyd-Stolarz S, et al: A randomized controlled trial on the effect of educational interventions in promoting airway management skill maintenance. *Ann Emerg Med* 2000; 36:301–309

56. Orde S, Celenza A, Pinder M: A randomised trial comparing a 4-stage to 2-stage teaching technique for laryngeal mask insertion. *Resuscitation* 2010; 81:1687–1691

57. McGaghie WC, Issenberg SB, Cohen ER, et al: Does simulation-based medical education with deliberate practice yield better results than traditional clinical education? A meta-analytic comparative review of the evidence. *Acad Med* 2011; 86:706–711

58. Ma IW, Brindle ME, Ronksley PE, et al: Use of simulation-based education to improve outcomes of central venous catheterization: A systematic review and meta-analysis. *Acad Med* 2011; 86:1137–1147

59. Gurusamy K, Aggarwal R, Palanivelu L, et al: Systematic review of randomized controlled trials on the effectiveness of virtual reality training for laparoscopic surgery. *Br J Surg* 2008; 95:1088–1097

60. Cook DA, Hamstra SJ, Brydges R, et al: Comparative effectiveness of instructional design features in simulation-based education: Systematic review and meta-analysis. *Med Teach* 2013; 35:e867–e898

61. Cook DA, West CP: Perspective: Reconsidering the focus on "outcomes research" in medical education: A cautionary note. *Acad Med* 2013; 88:162–167

62. Zendejas B, Brydges R, Wang AT, et al: Patient outcomes in simulation-based medical education: A systematic review. *J Gen Intern Med* 2013; 28:1078–1089

63. Zendejas B, Wang AT, Brydges R, et al: Cost: The missing outcome in simulation-based medical education research: A systematic review. *Surgery* 2013; 153:160–176

64. Prystowsky JB, Bordage G: An outcomes research perspective on medical education: The predominance of trainee assessment and satisfaction. *Med Educ* 2001; 35:331–336

65. Brydges R, Dubrowski A, Regehr G: A new concept of unsupervised learning: Directed self-guided learning in the health professions. *Acad Med* 2010; 85:S49–S55