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An Analysis Based on Chest CT in Patients Resuscitated From Cardiac
Arrest

Abstract and Introduction
Abstract

Objectives This study was conducted to determine the proper hand position on the sternum for external chest compression to
generate a maximal haemodynamic effect during cardiopulmonary resuscitation (CPR).

Methods 114 patients with cardiac arrest who underwent chest CT after successful resuscitation from January 2006 to August
2009 were included in the study. To evaluate the area of the cardiac chambers subjected to external chest compression, the
area of each cardiac chamber under the sternum was measured using cross-sectional CT at three different locations: the
internipple line on the sternum (point A), halfway between point A and the sternoxiphoid junction (point B) and at the
sternoxiphoid junction (point C).

Results The widest total heart area, total ventricular area and left ventricular area (LVA) were observed most frequently at point
C (58%, 85% and 78% of all cases, respectively). Few cases (six in total heart area, one in total ventricular area and one in
LVA) were observed as the widest at point A. Predicted compressed areas of the right and left ventricle were wider at point C
than at points A or B (right ventricular area: 366±536 mm2 at point A, 961±653 mm2 at point B and 1383±689 mm2 at point C,
p<0.001; LVA: 65±236 mm2 at point A, 365±506 mm2at point B and 1099±817 mm2 at point C, p<0.001).

Conclusions Only a small proportion of the ventricle is subjected to external chest compression when CPR is performed
according to the current guidelines. Compression of the sternum at the sternoxiphoid junction might be more effective to
compress the ventricles.

Introduction

Cardiopulmonary resuscitation (CPR) is an emergency technique performed by artificial ventilation and external chest
compression to support tissue perfusion, which has been recognised as a standard method for resuscitation since its
introduction in the 1960s.[1] In cardiac arrest, tissue perfusion critically depends on CPR until spontaneous circulation returns.
Therefore, chest compression is the essential factor in supplying blood to the vital organs during CPR. Although the cardiac
output generated by chest compression is within 17–27% of the normal cardiac output, it has been proved that the survival rate
for cardiac arrest patients on whom CPR was performed was increased two to threefold than that in patients who did not
receive CPR.[2–5] There have been a number of studies to increase cardiac output generated by chest compression during
CPR; however, most dealt with compression rate and depth rather than compression location.[6] According to the guideline for
CPR announced by the International Liaison Committee on Resuscitation, the American Heart Association and the European
Resuscitation Council in 2005, it was suggested that the rescuer should compress at the point where the sternum and
internipple line meet.[7–9] However, there is insufficient evidence for the proper hand position for chest compression, and it was
changed more ambiguously to the lower half of the sternum in the 2010 guidelines.[10–12]

The cardiac pump theory and the thoracic pump theory have been suggested as artificial circulatory mechanisms during CPR.
The cardiac pump theory suggests that increased intraventricular pressure, generated as the ventricles are compressed
between the sternum and the thoracic vertebrae during CPR, leads to the closure of the mitral and tricuspid valves and opening
of the aortic and pulmonary valves, which generates systemic and pulmonary circulation.[1, 13, 14] On the other hand, the
thoracic pump theory suggests that the circulation is generated by the difference between the external and internal thoracic
pressure when the chest is compressed, with the heart simply serving as a pathway for blood flow.[15–17] Several recent studies
using transoesophageal echocardiography have provided evidence that artificial circulation during CPR can be attributed to the
direct compression of the heart, which supports the cardiac pump theory as the main circulatory mechanism during CPR.[13, 14,
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18, 19]According to the cardiac pump theory, it is speculated that the left ventricle should be compressed as much as possible
for most effective circulation. However, there have been few studies to investigate the effective method for compressing the left
ventricle during CPR.

In this chest CT-based study, the structures below each chest compression point and the area of the left ventricle actually
compressed were analysed in each patient who received CPR, to study the efficiency and validity of the currently
recommended chest compression location.

Patients and Methods
Study Design and Participants

A retrospective cohort study was conducted to evaluate the chest CT in out-of-hospital cardiac arrest patients older than 18
years who had been admitted to the emergency department in cardiac arrest and resuscitated after CPR. The study was
approved by the Institutional Review Board. Chest CT were evaluated within a day after resuscitation when patients were
stabilised. From 1 January 2006 to 30 August 2009, 180 patients were resuscitated from cardiac arrest in our emergency
department. Among them, 127 patients had a chest CT scan within a day after resuscitation. Thirteen patients with pectus
excavatum or any kind of deformity in their thoracic structure, autopneumonectomy status due to a chronic pulmonary disease,
or dislocation of the heart due to emphysema were excluded. Finally, a total of 114 patients was enrolled in the study.

Study Theory

Cardiac output is calculated by multiplying stroke volume and heart rate. To increase cardiac output therefore either stroke
volume or heart rate has to increase. However, because during cardiac arrest heart rate is usually fixed within the range of
100–120 beats per minute, stroke volume would have to be increased at each chest compression during CPR to increase
cardiac output. We hypothesised that the larger area of the left ventricle that is compressed, the higher the cardiac output. We
therefore planned to measure the cross-sectional area of each cardiac structure beneath the sternum at different levels in the
chest CT.

Measurement

CT Scan and Measuring Programme A 64-slice multidetector CT scanner (Brilliance CT; Philips Healthcare Systems,
Cleveland, Ohio, USA) was used. The following imaging parameters were used: tube voltage 120 kV, tube current 150 mA,
detector collimation 64×0.625 mm, pitch 0.891, gantry rotation time 0.5 s, slice thickness 5 mm, slice overlap 0 and matrix
512×512. All studies were performed using breath-hold with full inspiration. CT images were displayed at the window width of
400 HU and a window level of 40 HU.

The cross-sectional area of the heart was analysed by the Centricity Work Station RA 1000 program by the General Electric
Company (GE Healthcare Integrated IT Solution, Barrington, Illinois, USA).

Measurement and Definition of Parameters The areas were calculated independently by two emergency physicians. During
chest compression, the midway portion width between the costochondral junction and the sternum, and that between the
sternum and costochondral junction (SCM) had been designated as the compressed areas; we measured the cross-sectional
area of the heart below SCM. The SCM and cross-sectional area of the heart were measured from three different levels: the
internipple line (A), sternoxiphoid junction (C), and the halfway between the two points (B). We used the maximum SCM within
three levels (SCMmax) as the standard width to measure the cross-sectional area of the heart below each level.

We set landmarks that divide each structure—a point where the bicuspid valve meets the left ventricle and left atrium; a point
where the tricuspid valve meets the right ventricle and the right atrium; and a point where the aortic valve meets the left
ventricle and the aorta—and measured the area of each structure. The left ventricular area (LVA) was measured including the
wall of the left ventricle and the interventricular septum.

Below SCMmax, the predicted compressed areas were defined as the total area of compression (TAC). TAC was defined as the
sum of each of the predicted compressed areas such as the right atrium area compressed (RAAcmp), the right ventricle area
compressed (RVAcmp), the left atrium area compressed (LAAcmp), the left ventricle area compressed (LVAcmp) and the great
vascular area compressed (GVAcmp). The total heart area (THA) was defined as the sum of the predicted compressed areas
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and non-compressed areas, and was composed of the right atrial area (RAA), the right ventricular area (RVA), the left atrial
area (LAA), the LVA and the great vascular area (figure 1). An area fraction of the predicted compressed cardiac structures was
calculated by dividing THA into the predicted compressed cardiac structure area.

Figure 1.

 

Measurement of areas on chest CT images (SCMmax, the maximal width of the midway portion between the costochondral
junction and the sternum; red line area, left ventricular area (LVA); blue line area, right ventricular area (RVA); pink line area,
left atrial area (LAA); purple line area, right atrial area (RAA); red colour area, predicted left ventricular area compressed
(LVAcmp); blue colour area, predicted right ventricular area compressed (RVAcmp); pink colour area, predicted left atrial area
compressed (LAAcmp); purple colour area, predicted right atrial area compressed (RAAcmp). This figure is produced in colour in
the online journal–please visit the website to view the colour figure.
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Statistical Analysis

Data were analysed using an averaged value of the area calculated by each assessor. Interobserver agreement for the
measurement of the area was assessed by Cronbach's α. Continuous data were presented as means with standard deviations
and compared with the independent sample t test or Mann–Whitney U test as appropriate. Nominal data were presented as the
percentage frequency of occurrence and compared with a χ2 or Fischer's exact test as appropriate. The cross-sectional areas
of the heart at points A, B and C were compared by analysis of variance test. Any differences were regarded as significant if p
values were less than 0.05. Statistical analysis was performed using a statistical software package (SPSS V.12.0 for Windows).

Results
General Characteristics and Interobserver Agreement for Measurement

Men accounted for 73 cases (64%) and the mean age was 56 years. Fifty-five (48%) of the cardiac arrest cases were of cardiac
aetiology, while 44 (39%) were of non-cardiac aetiology and 15 (13%) were secondary to trauma. The mean SCMmax was
7.85±0.63 cm. The level of interobserver agreement for measurement of the area was excellent (Cronbach's α 0.90).

Cross-sectional Areas of the Cardiac Structures at Levels A, B and C

THA and RAA was wider at points B and C than at point A (THA: 5202±2228 mm2 at point A, 7510±2216 mm2 at point B and
7615±3016 mm2 at point C, p<0.001; RAA: 451±624 mm2 at point A, 1134±787 mm2 at point B and 1215±850 mm2 at point C,
p<0.001). LAA was widest at point B (945±1032 mm2 at point A, 1626±828 mm2 at point B and 808±860 mm2 at point C,
p<0.001). LVA and RVA were widest at point C (RVA: 481±694 mm2 at point A, 1228±768 mm2at point B and 1633±783 mm2

at point C, p<0.001; LVA: 501±1054 mm2 at point A, 2023±1566 mm2 at point B and 3671±1477 mm2 at point C, p<0.001). The
great vascular area was widest at point A (2821±1347 mm2 at point A, 1487±1281 mm2 at point B and 296±569 mm2 at point
C, p<0.001) ().

Table 1.  Comparison of areas for each estimation point

 Estimation point

p Value* A B C

 n=114 n=114 n=114

THA (mm2) 5202±2228 7510±2216 7615±3016 <0.001

T† A b B  

RAA (mm2) 451±624 1134±787 1215±850 <0.001

T† A b B  

LAA (mm2) 945±1032 1626±828 808±860 <0.001

T† A b A  

RVA (mm2) 481±694 1228±768 1633±783 <0.001

T† A b C  

LVA (mm2) 501±1054 2023±1566 3671±1477 <0.001

T† A b C  

GVA (mm2) 2821±1347 1487±1281 296±569 <0.001

T† A b C  

*Statistical significance was tested by one-way analysis of variances among groups.
†The same letters indicate non-significant difference groups based on Tukey's multiple comparison test.
Estimation point A, internipple line; estimation point B, halfway point A and C; estimation point C, sternoxiphoid junction; GVA,
area of the great vessel; LAA, area of the left atrium; LVA, area of the left ventricle; RAA, area of the right atrium; RVA, area of
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the right ventricle; THA, total heart area.

The widest THA, total ventricular area and LVA were observed most frequently at point C (58%, 85% and 78%, respectively).
Few cases (six in THA, one in total ventricular area and one in LVA, respectively) were observed as the widest at point A (figure
2). This result suggests that point A is located on the great vessel area rather than the ventricles in most cases.

Figure 2.

 

The frequencies of the widest total heart area (WTHA), total ventricular area (WTVA) and left ventricular area (WLVA) at points
A, B and C. The WTHA, WTVA and WLVA are most frequently observed at point C.

Cross-sectional Areas of the Predicted Compressed Cardiac Structures at Levels A, B and C

TAC was wider at point B than at points A or C (4313±1528 mm2 at point A, 5284±1443 mm2 at point B and 4683±1976 mm2 at
point C, p<0.001). RAAcmp was wider at points B and C than at point A (438±615 mm2 at point A, 1094±780 mm2 at point B
and 1133±823 mm2 at point C, p<0.001). LAAcmp was wider at point B than at points A or C (815±936 mm2 at point A,
1499±785 mm2 at point B and 765±814 mm2 at point C, p<0.001). RVAcmp and LVAcmp were widest at point C than at points A
or B (RVAcmp: 366±536 mm2 at point A, 961±653 mm2 at point B and 1383±689 mm2 at point C, p<0.001; LVAcmp: 65±236
mm2 at point A, 365±506 mm2 at point B and 1099±817 mm2 at point C, p<0.001). GVAcmp was wider at point A than at points
B or C (2671±1286 mm2 at point A, 1368±1174 mm2 at point B and 294±566 mm2 at point C, p<0.001) (; figure 3). This result
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suggests that the wider area of the ventricles will be subjected to chest compression at point C than chest compression at
points B or C.

Table 2.  Comparison of predicted compressed areas for each estimation point

 Estimation point

p Value* A B C

 n=114 N=114 n=114

TAC (mm2) 4313±1528 5284±1443 4683±1976 <0.001

T† A B a  

RAAcmp (mm2) 438±615 1094±780 1133±823 <0.001

T† A B b  

LAAcmp (mm2) 815±936 1499±785 765±814 <0.001

T† A B a  

RVAcmp (mm2) 366±536 961±653 1383±689 <0.001

T† A B c  

LVAcmp (mm2) 65±236 365±506 1099±817 <0.001

T† A B c  

GVAcmp (mm2) 2671±1286 1368±1174 294±566 <0.001

T† A B c  

*Statistical significance was tested by one-way analysis of variances among groups.
†The same letters indicate non-significant difference groups based on Tukey's multiple comparison test.
Estimation point A, internipple line; estimation point B, halfway point A and C; estimation point C, sternoxiphoid junction;
GVAcmp, predicted compressed area of the great vessel; LAAcmp, predicted compressed area of the left atrium; LVAcmp,
predicted compressed area of the left ventricle; RAAcmp, predicted compressed area of the right atrium; RVAcmp, predicted
compressed area of the right ventricle; TAC, total area of compression.

Figure 3.
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An illustrated case of the predicted compressed area of each structure of the heart at the internipple line (A), halfway between
A and C (B) and the sternoxiphoid junction (C). The predicted compressed area is occupied with the great vessels at point A
while it is occupied with cardiac chambers at points B and C. Asc Ao, ascending aorta; PA, pulmonary artery; RAAcmp,
predicted right atrial area compressed; LAAcmp, predicted left atrial area compressed; RVAcmp, predicted right ventricular area
compressed; LVAcmp, predicted left ventricular area compressed.

Area Fraction of Predicted Compressed Cardiac Structures

RAAcmp fraction was 7±8% at point A, 14±8% at point B and 13±8% at point C; and LAAcmpfraction was 13±14% at point A,
20±10% at point B and 8±8% at point C. RVAcmp fraction was 5±8% at point A, 13±8% at point B and 18±10% at point C, and
LVAcmp fraction was 1±3% at point A, 5±7% at point B and 15±12% at point C. GVAcmp fraction was 62±34% at point A,
21±20% at point B and 3±7% at point C (figure 4).

Figure 4.

 

Area fraction of predicted compressed cardiac structures. Area fraction of the cardiac chamber areas increases and that of the
great vessel area (GVA) decreases as the compression point move from point A to points B and C. Point A, inter-nipple line;
point B, halfway between A and C; point C, sternoxiphoid junction; RAAcmp, predicted right atrial area compressed; LAAcmp,
predicted left atrial area compressed; RVAcmp, predicted right ventricular area compressed; LVAcmp, predicted left ventricular
area compressed.

Discussion

We observed that the areas of the ventricles subjected to chest compression become wider as the compression point shifts
from the internipple line to the sternoxiphoid junction. The results of our analysis suggest that the shift of the compression point
towards the sternoxiphoid junction might produce a higher degree of ventricular compression than chest compression at the
standard points does.
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As Kouwenhoven and colleagues[1] suggested 'closed-chest cardiac massage' at the level of the head of the xiphoid process
for cardiac resuscitation, a few studies have attempted to find the proper location for chest compression. In 1963, Thaler and
Stobie[20] suggested that CPR should be performed near the middle of the sternum instead of below the sternum because
many cases of liver injury were reported during infant CPR. In 1986, Orlowski[21] reported that CPR performed at the level of
the lower one-third of the sternum was safe and effective in infants and young children.

In the recent CPR guideline from International Liaison Committee on Resuscitation, American Heart Association and European
Resuscitation Council, the lower half of the sternum was recommended as the site for proper hand positioning during chest
compression.[10–12] However, the lower half of the sternum is not a clear compression point to be found by rescuers, and it was
recommended not because there was evidence that it was associated with effective generation of cardiac output but because it
is easily applicable for rescuers.

There have recently been several studies suggesting the hand position for chest compression, ie, against the recent CPR
guideline. In a study based on chest CT images from 189 patients, the root of the aorta, the ascending aorta and the left
ventricular outflow tract (LVOT) were located right below the midpoint of the internipple line in 80% of patients. Furthermore,
only 20% of the left ventricle was located below the midpoint of the internipple line, which suggested that it is more efficient to
perform chest compression at the very end of the sternum instead of at the midpoint of the internipple line.[22] Another study
revealed that the commonest anatomical structures that would be compressed are the ascending aorta and the top of the left
atrium.[23] It was also identified that the internipple line is not an optimal chest compression point in the paediatric population in
another study.[24] Furthermore, we had found that chest compression on the internipple line with a depth of 4–5 cm results in
compression of LVOT or of the proximal descending aorta, and cardiac output increased as the area of maximal compression
moved far away in the direction to the left ventricle from the LVOT in a previous study using transoesophageal
echocardiography.[25]

In this study, THA and the area fraction of predicted compressed left ventricle increased and the area fraction of predicted
compressed great vessel area decreased as the point of compression descended to the sternoxiphoid junction from the
internipple line. The results imply that effective compressions of the ventricles are expected when chest compression is
performed at the sternoxiphoid junction and would be an important basis for a more effective chest compression method during
CPR.

Previous studies using chest CT images, which reported that the lower half of the sternum is not an optimal compression point
during CPR, just verified the anatomical position of the heart below the sternum. We compared predicted compressed areas
and the fraction of each structure of the heart and suggested an alternative chest compression point to generate effective
cardiac output on the basis of these results. It would be more realistic to determine the optimal chest compression point during
CPR than previous studies.

A concern regarding the safety aspect can be raised when chest compression is performed at the sternoxiphoid junction.
Compression of the abdomen increases the risk of blunt upper abdominal trauma including injuries of the liver.[26] Therefore,
the safety issue should be resolved before chest compression at the sternoxiphoid junction is implemented in clinical practice.

This study had several limitations. First, relocation of the structures within the thoracic cavity after intubation and artificial
ventilation might be possible because chest CT images were not obtained during CPR. In addition, because chest CT is
performed with the arms raised, there might be some discrepancy in the position of the nipples with that during CPR. A study
revealed that the sternal notch moved up an average of 8.4 mm when a chest CT scan was taken in the arms-raised
position.[27] It is not likely that this minor movement of the sternum causes a significant change in study results. Second, the
uncertainty as to whether the heart is in systole or diastole might introduce bias in the measurement of the areas of cardiac
structures. The LVA was measured including the wall of the left ventricle and the interventricular septum. The compressed
portion of the heart during CPR is only the left ventricular chamber not the wall itself, so that it might be more realistic to
measure only the contrast enhanced area of the left ventricle. However, we chose to include the wall of the left ventricle and the
interventricular septum in the LVA because the left ventricular cavity area in a beating heart will be subject to a specific phase
of cardiac cycles. Third, there might be a difference between areas of predicted compressed and actual compressed structures
because the rectangular structure of the sternum might confer a similar haemodynamic effect to compressing part or a broad
area of it. Further study evaluating haemodynamic effect by compression point could address this unsolved question. Fourth,
this study assumed that the cardiac pump theory is the major mechanism in the generation of cardiac output during CPR.
Therefore, it is not considered in this study that intrathoracic pressure could generate an additional haemodynamic effect.
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Finally, with the analysis of chest CT images, we only measured a cross-sectional area, and did not perform a volumetric
analysis. Therefore, measuring the volume of various structures in the thoracic cavity would allow this study to correlate better
with real CPR situations.
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Conclusions 
Only a small proportion of the ventricle is subjected to external chest compression when CPR is performed according to the
current guidelines. Compression of the sternum at the sternoxiphoid junction might be more effective to compress the
ventricles.
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