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Abstract

Background

Pre-hospital laryngoscopic endotracheal intubation (ETI) is potentidifg-aaving procedure but i
a technique difficult to acquire. This study aimed to obtain a recommendatitimefaumber of times
ETI should be practiced by constructing the learning curve for endwedintubation by paramedic
as well as to report the change in the frequency of complications possibgiated with intubatio
over the training period.

Methods

Under training conditions, 32 paramedics performed a total of 1,045 ETés ioperating room.

Trainees performed ETIs until they succeeded in 30 cases. For ed@ntp the number o
laryngoscopic maneuvers and any complications potentially associated withwé&€ recorded
We built a generalized logistic model to construct the learning curve foraadlthe frequency g
complications.

Results

During the training on the first 30 patients the rate of ETI success at theafissnpt improved
from 71% to 87%, but there was little improvement during the first 13 casé® ffEquency of
complications decreased from 53% to 31%. More laryngoscopic mareawer longer operatio
time increased complications.

Conclusions

It seems that 30 live experiences of performing an ETI is sufficientofataining a 90% ET
success rate, but there seems to be little benefit with fewer than 13 exsriefihe frequency @
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complications remained at a high level even after the training. Itis desiratdathuct a more detaile
and rigorous evaluation of the benefit of pre-hospital ETI in raising kilelevel of paramedics.
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Background

In Japan, until 2004 only medical doctors were legally allowed to perforraralotracheal intubation
on patients. In 2004, the Japanese Ministry of Health, Labour and \Wdkaalized pre-hospital

endotracheal intubation (ETI) by paramedics who have successfutipleted a standardized training
program, which consists of learning the theoretical aspects of ETI frolectre and a video,

practicing on a mannequin and 30 live experiences of intubation in antojeraom.

The objective of this study was to assess the efficacy of the traininggrofyom the following two
points of view: (i) How much does the success rate of ETI improve over dese of the 30 live
experiences? (ii) How much does the frequency of complications posstgimted with ETI decrease?
These questions are important for the following reasons. First, the behglfie-hospital ETI over
bag-valve-mask ventilation remains controversial [1-6]. For predteddpTI to have any benefit, the
performer of ETI must possess a minimum acceptable skill level. Thertfeleterogeneity in the skill
levels of paramedics across studies might be a source of controvgesdirey the benefit of pre-hospital
ETI over bag-valve-mask ventilation. Second, knowing the learningeoofr£T1 is helpful in designing
training programs because opportunities for practicing ETI are limitedceglydor paramedics. Third,
although the learning curve for endotracheal intubation has been sfdelldd, how fast complications
associated with endotracheal intubation diminish seems to be an untouchec.sWe also study the
factors associated with complications.

Methods
Study population

Following institutional review board approval (Japanese Red Cross Kitaspital, Kitami, Hokkaido,
Japan), a total of 32 paramedics were trained in laryngoscopic enldesdaintubation (ETI) from
January 2005 to December 2011. None of the trainees had prior expeieé live ETI. All trainees
were formally trained in the theoretical aspects of ETI through attending relatdized lecture,
watching a video and then practicing on a mannequin before participating stutig. This training
was given by one instructor (Arakawa). Healthy surgical patients whuaired an endotracheal tube as
part of their anesthetic management were recruited to the study and mrowiitien informed consent.
The inclusion criteria were: (i) age 20 years or older, (i) American Socdefnesthesiologists (ASA)
physical status class | or Il and (iii) no evidence of a potentially difficulivay. Under a standardized
anesthesia technique with muscle relaxation (5 mg/kg thiamylal sodium and 0.0 todikg
vecuronium), these patients underwent ETI by the trainees, with an atean@sthesiologist present
and providing ongoing supervision. For each patient the trainee was tyixo opportunities to perform
the laryngoscopic maneuver. If the trainee failed to complete ETI after twmptse(an attempt is
defined by a laryngoscopic maneuver, that is, the insertion of the lasgnge blade into the mouth),
the attending anesthesiologist took over. The attending anesthesiologistied the number of
intubation attempts (one, two or three if the attending anesthesiologist tookanetevaluated any
complications possibly associated with intubation right after the completion olaEWell as at the



post-operative visit. A complication was defined by one (or more) of thevioligp symptoms:
hoarseness, sore throat, lip laceration, oral bleeding, gingival ingetlp bleeding, pharyngeal
bleeding, tongue laceration, dental damage, lip swelling or tongue bleedinge symptoms may have
been caused not by the intubation but the subsequent operation, donked to include as many
potential complications as possible to produce a conservative estimatetr&aele continued training
until completed 30 successful ETls had been completed in total.

Evaluation of ETI

We defined the completion of ETI by a proper placement of the endotriatiiea (auscultation of
stomach and both lungs and end-tidal carbon dioxide measurement) adt@r dwo laryngoscopic
maneuvers. For the purpose of statistical analysis we defined ‘suatctist attempt’ and ‘success at
second attempt’ by the completion of ETI after one and two laryngoscopicuwars respectively. We
distinguished these two events because they are not statistically indepsimaenfailure in the first
attempt might be associated with problems with the patient’s airway or the trainee ghigin useful
information (such as the anatomical structure of the patient’s airway) diménfirst attempt.

Statistical analysis

We built a generalized logistic model similar to, but more general and flexibhe that of Mulcasteet
al. [9] to construct the learning curve for successful ETI as well as ticatpns. More precisely, the
model for the ETI success rate is:

Py — P;
Pr(succesg) = P, 7 1
i ®) = Pt T (Ve =) @
wherez is the number of experiences & 1,2, ..., 30), P; and P are the initial and final success rates

corresponding ta: — +oo, V' is the learning speed arid is the number of experiences at which the
success rate improves fastest. We define a successful intubation detoagnpT| at the first attempt.

In Model 1 only experience is a relevant explanatory variable because the age and sex of the patient
were found to be insignificant in a preliminary analysis. We did not includetineber of elapsed days
since the first day of training as a regressor because it has beeth towlre insignificant [10]. The
usual logistic model with no initial or final skill level is a special case of Mddéy settingPP, = 0

and Py = 1. We estimated the model parameté}s Py, V andT’ using the maximum likelihood and
obtained the 95% confidence interval of each parameter as well as ttessuate by bootstrapping
1,000 times [12].

We also applied a generalized logistic model similar to Model 1 to analyze thealgfity of
complications associated with ETI. The full model is:
e @
+ exp(—G'x)
whereP; and Py are the initial and final complication rate8,is the vector of coefficients andis the
vector of explanatory variables that includes a constant, the experibeagperation time (in minutes),
dummy variables for failure in the first and second intubation attempts for geatidnt, the patient’s
age and sex, and whether a nasogastric tube was inserted. As befastimated Model 2 using
the maximum likelihood and obtained the 95% confidence interval of eacimpteaas well as the
complication rate by bootstrapping 1,000 times. Since we failed to reject the simgggdanodel with
no starting skill level £; = 1) and no final skill level Py = 0) (P = 1.00), we re-estimated the model
by settingP; = 1 andP; = 0.

Pr(complicationx) = P; +

All statistical analyses were conducted using Matlab v8.0.0 (The Math\Murks Natick, MA, USA).
Estimation by maximum likelihood was performed using the nsear ch command and the 95%



confidence intervals were obtained by theot ci command. We applied the likelihood ratio test [13]
for all hypothesis testing.

Results

Overall, 32 paramedics attempted 1,049 laryngoscopic endotrachealtionsha Four cases were
aborted because of the failure in visualizing the vocal cords in one paitienh mobility in another
and dental damage during the bag-valve-mask ventilation in two others. @drtianing 1,045 cases,
for each trainee we used only the data corresponding to the first 30 tgateeavoid introducing
survival bias. Therefore the total number of observations used irattaeaghalysis wa32 x 30 = 960.

ETI success

To visualize the learning curve, in Figure 1 we plot the observed ETlessctequency computed over
ten intervals with equal length (experience from 1 to 3, 4 to 6 and so on)elisas the estimated

probability (see the Appendix for details). Table 1 presents the paranmmierates and confidence
intervals.

Figure 1 Observed success frequency of endotracheal intubaticand estimated probability from
Model 1. The dashed curves indicate the 95% confidence interval.

Table 1 Estimation result of Model 1
Parameter Estimate 95% CP

2 0.71  [0.46,0.75]
Py 0.87  [0.82,1.0]
1% 0.30  [0.040, 22]
T 19 [14, 29]

495% confidence interval obtained by
bootstrapping 1,000 times.

According to Figure 1, the fitted probability closely tracks the observeguércy. In particular, the
fitted probability shows no substantial improvement before 15 experidutebarply increases between
15 and 25 experiences. The reason why the 95% confidence interalsder in this region is because
the fitted success rate (right-hand side of Equation 1) is most sensitive leating speed’ in this
region, hence the confidence intervals widen because of the samplangnelf.

To test that there is initially no substantial improvement in the ETI successaratassume there is no
learning effect up to some threshold for experiences and estimate Modih the threshold with
highest log-likelihood. More precisely, the new model is that Equation 1shfddz > £ but
Pr(succesg) = constant forr < k, wherek is the threshold. The resulting threshold was 13 and the
null hypothesis ‘no substantial learning up to some threshold of expesén@s not rejected by the
likelihood ratio test P = 0.44, one degree of freedom).

Overall the success rate improved from 71% to 87% after training on 30nmatién fact, the null
hypothesis of no learnind{ = 0 in Model 1) was rejected by the likelihood ratio tegt & 0.0019).
Even with no training the success rate was positie=£ 0 in Model 1 was rejected? = 0.0016), but
the success rate did not necessarily plateau at a level below 1B0% { in Model 1 was not rejected,
P = 0.65).



To evaluate the model fit, we divided experience into 30, 15 and 10 c@&egoorresponding to
intervals with length 1, 2 and 3 and performed the likelihood ratio test for messtof-fit (to this end,

we compared the baseline Model 1 to a multinomial distribution; see the Appendirdre details).
The result wasP? = 0.38,0.42 and0.62 in each case, suggesting that the current generalized logistic
model fits well to the data.

Although our data involved 30 experiences or less for each trainee,awecampute how many
experiences are necessary to achieve a prescribed success ratdeéligve that the model can be
extrapolated. To this end, we used the baseline Model 1 with final probabBjlity 1 (which was not
rejected) and found the number of experienedblat gave the prescribed success rate. The confidence
intervals were obtained by bootstrapping as before. The resultwag1.5 (95% CI: [27.6, 54.3]) for
90% success rate and= 38.6 (95% ClI: [31.2, 76.9]) for 95% success rate.

To evaluate the robustness of Model 1, we performed a number oftrassschecks. Although the
learning curve in Figure 1 is S-shaped, Gallistelal. [14] report that the negatively accelerated,
gradually increasing learning curve is an artifact of group averagiiogdeal with the possibility that
individual learning curves deviate from the average learning cureegstimated Model 1 by allowing
one of the parametelfig, T', or both to vary across paramedics. However, the baseline Model 1uvitho
individual fixed effects was not rejected by the likelihood ratio téstf 1.00 in all three cases). Thus
the learning curve for ETI did not appear to vary across individuals.

In Model 1 we assumed that experiencenters linearly in the logistic function. To deal with potential
nonlinearity, we added a quadratic temfV (z —T'))? into the logistic function in Equation 1, whedés

a coefficient. However, the likelihood ratio test failed to reject the baseliogelil, which corresponds
toa = 0 (P = 0.86). Therefore, the baseline Model 1 seemed appropriate.

Complications

Table 2 shows the prevalence of complications possibly associated witls&@mhe(patients experienced
two or more). Except for three cases of dental damage, the complicateresmnor?

Table 2 The prevalence of complications possibly associated
with laryngoscopic endotracheal intubation

Complication Number of cases Percentage in sample
Hoarseness 307 29%
Sore throat 189 18%
Lip laceration 15 1.4%
Oral bleeding 13 1.2%
Gingival bleeding 5 0.48%
Lip bleeding 5 0.48%
Pharyngeal bleeding 4 0.38%
Tongue laceration 4 0.38%
Dental damage 3 0.29%
Lip swelling 2 0.19%
Tongue bleeding 1 0.1%

Figure 2 plots the observed frequency of complications as well as the estipratgability. Table 3
presents the parameter estimates and confidence intervals. Overall tHeatiamprate decreased from
53% to 31% after training on 30 patients. A patient’s age and sex and wleetteeyogastric tube was
inserted were jointly insignificant{ = 0.21). More experience decreased the complicatidAs={
0.0055) and reduced the operation time and one or two failures in intubation-indraraglications



(P = 0.016,0.0060, respectively), but there was no difference in complications betweerand two
failures (P = 0.75). This was probably because if the trainee failed twice, the attending asestigist
took over, whose laryngoscopic maneuver is minimally invasive.

Figure 2 Observed frequency of complications and estimated probality from Model 2.  The
dashed curves indicate the 95% confidence interval.

Table 3 Estimation result of Model 2

Variable Estimate 95% CI2
Experience 0.031 [0.016, 0.047]
Operation time —0.0026 [—0.004, —0.0007]
One failure —0.73 [—1.2, —0.027]
Two failures —0.86 [—1.5, —0.02]

495% confidence interval obtained by bootstrapping 1,000 times.

Discussion

Considering the limited opportunities for paramedics to practice ETI, the lepmirve in Figure 1
suggests that requiring 30 live experiences seems to be reasonakl@ftarc30 live experiences the
success rate was 87% (95% CI: 82 to 94%). However, whether paiesstbuld be trained in ETI in
the first place or whether paramedics should perform pre-hospitasEnbther issue. Although there is
some evidence that endotracheal intubation in the field by paramedics impuawéval and functional
outcome in patients with head injury [1,6], other studies report negativésd2-5]. A more detailed
and rigorous evaluation of the benefit of pre-hospital ETI is desirdbléhat case it will be important
to control for the skill level of paramedics participating in the study, sincdomved that there is no
significant learning effect up to 13 live experiences.

The National Standard Paramedic Curriculum in the US recommends thatq@icastudents perform
at least five live endotracheal intubations [10], but the learning cumi€igure 1 suggests that five
experiences are insufficient since we found that there is no signifeamiing up to 13 experiences and
learning is fastest at around 19 experiences. Since the simulation ofifild mannequin is reported to
be effective [15], trainees with limited training opportunities (especiallymardics) should thoroughly
practice with mannequins before proceeding to live ETI to get the mostf dluib®e opportunities.

Although complications associated with ETI are well known [16,17], theeehardly any reports on
the dependence of the complication rate on the experience of the perfoAoeording to Figure 2
the frequency is quite high among novices, but quickly diminishes with aahjaikperience. The vast
majority of complications are minor, among which hoarseness and sore #meo#ie most common.
Not all of these cases were caused by intubation per se, since agctwd@Conwayet al. [18] sore
throat occurs in about 10% of all post-operative patients (excludingetiino underwent pharyngeal
and laryngeal operations) who were not intubated. However, the aufsigure 2 does provide an upper
bound (conservative estimate) of complications caused by intubation. Zabiemarizes the baseline
and final probabilities (probabilities before and after training) and theslimld number of experiences
for the improvement of performance.

The learning curve for anesthetic procedures has been documentedurgber of researchers using
simple visualization [19], the cusum method [7,8,20,21] and logistic regref&ibh], among others.
Simple visualization such as the observed frequency in Figures 1 and wagsahelpful to avoid
specifying a highly inappropriate model. Without visualization we would neehraodeled the initial
and final success rate as in Model 1. However, currently there is nersally accepted method for



Table 4 Summary

ETI success Complication

Baseline probability (before training) 71% 53%
Final probability (after training) 87% 31%
Threshold for improvement 13 0

modeling the learning curve (see [22,23] for systematic reviews). Statistetlods for modeling the
learning curve ideally should aim to estimate three parameters: rate of ledvasgjine (starting) skill
level and final skill level (asymptote) [23]. Our proposed Model Icairse, passes these criteria.

The cusum method [24], despite its wide use, is problematic for modeling therlganurve. First, the
cusum method was originally developed for quality control to detect a psoget of control. Since
by design the cusum method can only be applied to a process with a linearitreright be useful

for detecting the emergence of a learning effect (or detecting a traineésvidsss proficient) but is not
suitable for modeling the entire learning curve where the success ratgeshaanlinearly over time.
Second, explanatory variables other than time cannot be included in tbencusthod. Third, the
cusum method is unable to estimate the rate of learning, the baseline skill I¢kelforal skill level.

The generalized logistic model we applied to construct the learning curesiislét enough to fit the data
well but specialized enough to be able to estimate the parameter of interesopé&/éhat researchers
interested in the learning curve will broaden their analytical tools.

Limitations

This study has a number of limitations. First, because the study was cartiatlagingle institution,

the particular learning curve we obtained is strongly influenced by theitepghality of this particular

institution. Second, in our study we included only healthy surgical patientsnittign of an obviously

difficult airway. Thus it is unclear whether our results will remain valid foe thihole population,

although our learning curve for ETI can be interpreted as the upperdb@ptimistic estimate) of the
true learning curve with the general population. Third, as the paramedics twained only up to 30
experiences, the extrapolation of the learning curve beyond 30 cheaklde taken with caution.
Finally, and perhaps most importantly, the outcome of this study (succes®faflintubation under

muscle relaxation in the operating room) is necessarily a short-term goalofidguerm goal is whether
paramedic intubation is beneficial to actual emergency patients, but oy dtes not address this
guestion. However, our study does point out the importance of contreimgkill level of paramedics
when evaluating the benefit of paramedic pre-hospital intubation.

Conclusions

Any training program should be evaluated for efficacy. We construbearning curve for paramedic
intubation and found that 30 live experiences of laryngoscopic eraiwed intubation seems to be
sufficient for obtaining a 90% success rate in an operating room, bt $kems to be little benefit with
fewer than 13 experiences. The frequency of complications remairtggt &evel even after training. It
is desirable to conduct a more detailed and rigorous assessment of dfi¢ bigpre-hospital intubation
that controls for the skill level of paramedics.

Endnotes
aAn anonymous reviewer suggested reporting the baseline complications ahésthesiologists that

usually perform intubation at this institution for comparison to the paramedicfrtunately, no data
were available since minor complications are often left unreported by asésitgists.
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Appendix
Generalized logistic model

Suppose an outcomegis binary, sayy = 0,1 or ‘success’ and ‘failure’, and we are interested in the
relation between some explanatory variabteand the probability of the outcom®r(y = 1]x). A
typical way to model this situation is the linear logistic model:

1

Pr(y = 1|x) = W7

3)
whereg is the vector of coefficients of the regressors. The simple logistic Modely3maseful most
of the time, but it has the disadvantage that the initial and final probabilityuoft&sss’ is necessarily
0 and 1. To see this, suppose that the regressors include time and let tiraey lsenall or very large.
Then the right-hand side of 3 tends to 0 or 1. For this reason, we use tleegereral model:

P;— P,

Pry=1x)=P+—7F "'
r(y |X> 'L+ 1—|—eXp(—,3/X)’

(4)

whereP; and P; are the initial and final probabilities of ‘success’. Model 4 includes the lsitogistic
Model 3 by setting?; = 0 and Py = 1, which Mulcastegt al. [9] use to model successful ETI.

Estimation

Because Model 4 is fully parametric, the most natural way to estimate it is bynMiax likelihood. Let
(yn,xn)2_, be the data. Then the log-likelihood function is given by:

N

Pf—Pi
log L(P,. Pr.3) = log | P;
og L(P;, Py, 3) ;[% °g< ’+1+exp(—ﬁ’xn)>

+(1 — yn)log <1 —P- 1T i‘p(__]Z,Xn)ﬂ . (5)

The maximum likelihood estimatofP;, P, 3) can be obtained by maximizing the log-likelihood
function 5 subject t® < P;, Py < 1 using optimization routines. For instance, in this paper we use the
f mi nsear ch command in Matlab v8.0.0 (The MathWorks, Inc., Natick, MA, USA).



Confidence intervals

Under general conditions the maximum likelihood estimator is consistent antpsstjcally normal.
Therefore in large samples the standard errors and confidence Istefymrameters can be obtained
using the asymptotic variance. This approach has the disadvantage thppto&imation may not be
good in small samples and we need to compute higher-order derivatitles lofg-likelihood function.

An alternative is to use the bootstrap [12]. For each bootstrap repetitien 1,2,..., B (say

B = 1,000), we construct a bootstrap sampig , x%)V_, by resampling (with replacement) from the
original sample(y,,, x,)"_, with probability 1/N for each observation. Then we estimate the model
by maximum likelihood using each bootstrap sample and obtainbe — «)% confidence interval

of any parameter of interest by reporting thé2 and1 — «/2 quantiles of the bootstrap estimates
corresponding td = 1,2,...,B. In this paper we obtain the 95% confidence intervals using the
boot ci command in Matlab.

Model selection and goodness-of-fit

Model 4 actually contains many models, selected by choosing a differeoit @eplanatory variables

or restricting the initial and final probabilitied and P;. How should we choose from different models?
If one model is nested within another (that is, one model is a special cas®tifer), we can use the
likelihood ratio test [13]. Suppose there are two models, 1 and 2, whedeIMois a special case of
Model 2. Let; and L» be the likelihood of each model obtained by maximum likelihood estimation.
Then the logarithm of the likelihood ratio statisti€log Lo — log L) is asymptotically chi-squared
distributed with degrees of freedoka — k1, wherek; andk, are the number of parameters in Models
1 and 2. This is the likelihood ratio test. To compare models that are not aeitesgsted, we can use
either the Akaike Information Criterion [25] or the Bayesian Information Gate[26], but for the data
used in this paper the likelihood ratio test suffices.

To test the model fit, suppose that the value of the explanatory varialfidts in one ofJ categories.
Then Model 4 is a special case of the model in which the outcpommes from a binomial distribution
with success ratp;, wherej = 1,2,...,J. Thus evaluating the model fit reduces to the comparison
between two nested models, hence we can apply the likelihood ratio test. kaisgly, letV; be the
number of observations in categoryof which there are:; ‘successes’. Then the maximum likelihood
estimate of the binomial model j§ = n;/N;, with log-likelihood:

J
Z njlogpj + —n;j)log(1 — pj)]. (6)
7j=1

On the other hand, the fitted probability of ‘success’ in categarging Model 4 is given by:

A~

.1 A P — P,
Qj:fz P; + 5
N; Xn€j 1+ exp(— ,6 n)

Then the log-likelihood of Model 4 withy categories is given by Equation 6 with replaced byg;.
Having obtained two log-likelihoods, we can perform the likelihood ratio temtntore information see
Chapter 5 of Hosmer and Lemeshow [27].
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