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Abstract

Background

Pre-hospital laryngoscopic endotracheal intubation (ETI) is potentially alife-saving procedure but is
a technique difficult to acquire. This study aimed to obtain a recommendation forthe number of times
ETI should be practiced by constructing the learning curve for endotracheal intubation by paramedics,
as well as to report the change in the frequency of complications possibly associated with intubation
over the training period.

Methods

Under training conditions, 32 paramedics performed a total of 1,045 ETIs inan operating room.
Trainees performed ETIs until they succeeded in 30 cases. For each patient, the number of
laryngoscopic maneuvers and any complications potentially associated with ETI were recorded.
We built a generalized logistic model to construct the learning curve for ETIand the frequency of
complications.

Results

During the training on the first 30 patients the rate of ETI success at the first attempt improved
from 71% to 87%, but there was little improvement during the first 13 cases. The frequency of
complications decreased from 53% to 31%. More laryngoscopic maneuvers and longer operation
time increased complications.

Conclusions

It seems that 30 live experiences of performing an ETI is sufficient forobtaining a 90% ETI
success rate, but there seems to be little benefit with fewer than 13 experiences. The frequency of



complications remained at a high level even after the training. It is desirable toconduct a more detailed
and rigorous evaluation of the benefit of pre-hospital ETI in raising the skill level of paramedics.
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Background

In Japan, until 2004 only medical doctors were legally allowed to perform an endotracheal intubation
on patients. In 2004, the Japanese Ministry of Health, Labour and Welfare legalized pre-hospital
endotracheal intubation (ETI) by paramedics who have successfully completed a standardized training
program, which consists of learning the theoretical aspects of ETI from alecture and a video,
practicing on a mannequin and 30 live experiences of intubation in an operating room.

The objective of this study was to assess the efficacy of the training program from the following two
points of view: (i) How much does the success rate of ETI improve over the course of the 30 live
experiences? (ii) How much does the frequency of complications possibly associated with ETI decrease?
These questions are important for the following reasons. First, the benefit of pre-hospital ETI over
bag-valve-mask ventilation remains controversial [1-6]. For pre-hospital ETI to have any benefit, the
performer of ETI must possess a minimum acceptable skill level. Thereforethe heterogeneity in the skill
levels of paramedics across studies might be a source of controversy regarding the benefit of pre-hospital
ETI over bag-valve-mask ventilation. Second, knowing the learning curve of ETI is helpful in designing
training programs because opportunities for practicing ETI are limited, especially for paramedics. Third,
although the learning curve for endotracheal intubation has been studied[7-11], how fast complications
associated with endotracheal intubation diminish seems to be an untouched subject. We also study the
factors associated with complications.

Methods

Study population

Following institutional review board approval (Japanese Red Cross KitamiHospital, Kitami, Hokkaido,
Japan), a total of 32 paramedics were trained in laryngoscopic endotracheal intubation (ETI) from
January 2005 to December 2011. None of the trainees had prior experience of live ETI. All trainees
were formally trained in the theoretical aspects of ETI through attending a standardized lecture,
watching a video and then practicing on a mannequin before participating in thestudy. This training
was given by one instructor (Arakawa). Healthy surgical patients who required an endotracheal tube as
part of their anesthetic management were recruited to the study and provided written informed consent.
The inclusion criteria were: (i) age 20 years or older, (ii) American Societyof Anesthesiologists (ASA)
physical status class I or II and (iii) no evidence of a potentially difficult airway. Under a standardized
anesthesia technique with muscle relaxation (5 mg/kg thiamylal sodium and 0.07 to 0.1 mg/kg
vecuronium), these patients underwent ETI by the trainees, with an attending anesthesiologist present
and providing ongoing supervision. For each patient the trainee was given two opportunities to perform
the laryngoscopic maneuver. If the trainee failed to complete ETI after two attempts (an attempt is
defined by a laryngoscopic maneuver, that is, the insertion of the laryngoscope blade into the mouth),
the attending anesthesiologist took over. The attending anesthesiologist recorded the number of
intubation attempts (one, two or three if the attending anesthesiologist took over) and evaluated any
complications possibly associated with intubation right after the completion of ETIas well as at the



post-operative visit. A complication was defined by one (or more) of the following symptoms:
hoarseness, sore throat, lip laceration, oral bleeding, gingival bleeding, lip bleeding, pharyngeal
bleeding, tongue laceration, dental damage, lip swelling or tongue bleeding.Some symptoms may have
been caused not by the intubation but the subsequent operation, but wedecided to include as many
potential complications as possible to produce a conservative estimate. Eachtrainee continued training
until completed 30 successful ETIs had been completed in total.

Evaluation of ETI

We defined the completion of ETI by a proper placement of the endotracheal tube (auscultation of
stomach and both lungs and end-tidal carbon dioxide measurement) after one or two laryngoscopic
maneuvers. For the purpose of statistical analysis we defined ‘successat first attempt’ and ‘success at
second attempt’ by the completion of ETI after one and two laryngoscopic maneuvers, respectively. We
distinguished these two events because they are not statistically independent since failure in the first
attempt might be associated with problems with the patient’s airway or the trainee might obtain useful
information (such as the anatomical structure of the patient’s airway) duringthe first attempt.

Statistical analysis

We built a generalized logistic model similar to, but more general and flexible than, that of Mulcasteret
al. [9] to construct the learning curve for successful ETI as well as complications. More precisely, the
model for the ETI success rate is:

Pr(success|x) = Pi +
Pf − Pi

1 + exp(−V (x− T ))
, (1)

wherex is the number of experiences (x = 1, 2, . . . , 30), Pi andPf are the initial and final success rates
corresponding tox → ±∞, V is the learning speed andT is the number of experiences at which the
success rate improves fastest. We define a successful intubation as completing ETI at the first attempt.
In Model 1 only experiencex is a relevant explanatory variable because the age and sex of the patient
were found to be insignificant in a preliminary analysis. We did not include thenumber of elapsed days
since the first day of training as a regressor because it has been found to be insignificant [10]. The
usual logistic model with no initial or final skill level is a special case of Model 1 by settingPi = 0
andPf = 1. We estimated the model parametersPi, Pf , V andT using the maximum likelihood and
obtained the 95% confidence interval of each parameter as well as the success rate by bootstrapping
1,000 times [12].

We also applied a generalized logistic model similar to Model 1 to analyze the probability of
complications associated with ETI. The full model is:

Pr(complication|x) = Pi +
Pf − Pi

1 + exp(−β′
x)

, (2)

wherePi andPf are the initial and final complication rates,β is the vector of coefficients andx is the
vector of explanatory variables that includes a constant, the experience, the operation time (in minutes),
dummy variables for failure in the first and second intubation attempts for eachpatient, the patient’s
age and sex, and whether a nasogastric tube was inserted. As before we estimated Model 2 using
the maximum likelihood and obtained the 95% confidence interval of each parameter as well as the
complication rate by bootstrapping 1,000 times. Since we failed to reject the simple logistic model with
no starting skill level (Pi = 1) and no final skill level (Pf = 0) (P = 1.00), we re-estimated the model
by settingPi = 1 andPf = 0.

All statistical analyses were conducted using Matlab v8.0.0 (The MathWorks, Inc., Natick, MA, USA).
Estimation by maximum likelihood was performed using thefminsearch command and the 95%



confidence intervals were obtained by thebootci command. We applied the likelihood ratio test [13]
for all hypothesis testing.

Results

Overall, 32 paramedics attempted 1,049 laryngoscopic endotracheal intubations. Four cases were
aborted because of the failure in visualizing the vocal cords in one patient,tooth mobility in another
and dental damage during the bag-valve-mask ventilation in two others. Of theremaining 1,045 cases,
for each trainee we used only the data corresponding to the first 30 patients to avoid introducing
survival bias. Therefore the total number of observations used in the data analysis was32× 30 = 960.

ETI success

To visualize the learning curve, in Figure 1 we plot the observed ETI success frequency computed over
ten intervals with equal length (experience from 1 to 3, 4 to 6 and so on) as well as the estimated
probability (see the Appendix for details). Table 1 presents the parameter estimates and confidence
intervals.

Figure 1 Observed success frequency of endotracheal intubationand estimated probability from
Model 1. The dashed curves indicate the 95% confidence interval.

Table 1 Estimation result of Model 1
Parameter Estimate 95% CIa

Pi 0.71 [0.46, 0.75]
Pf 0.87 [0.82, 1.0]
V 0.30 [0.040, 22]
T 19 [14, 29]

a95% confidence interval obtained by
bootstrapping 1,000 times.

According to Figure 1, the fitted probability closely tracks the observed frequency. In particular, the
fitted probability shows no substantial improvement before 15 experiencesbut sharply increases between
15 and 25 experiences. The reason why the 95% confidence intervals are wider in this region is because
the fitted success rate (right-hand side of Equation 1) is most sensitive to thelearning speedV in this
region, hence the confidence intervals widen because of the sampling error in V .

To test that there is initially no substantial improvement in the ETI success rate,we assume there is no
learning effect up to some threshold for experiences and estimate Model 1with the threshold with
highest log-likelihood. More precisely, the new model is that Equation 1 holds for x > k but
Pr(success|x) = constant forx ≤ k, wherek is the threshold. The resulting threshold was 13 and the
null hypothesis ‘no substantial learning up to some threshold of experiences’ was not rejected by the
likelihood ratio test (P = 0.44, one degree of freedom).

Overall the success rate improved from 71% to 87% after training on 30 patients. In fact, the null
hypothesis of no learning (V = 0 in Model 1) was rejected by the likelihood ratio test (P = 0.0019).
Even with no training the success rate was positive (Pi = 0 in Model 1 was rejected,P = 0.0016), but
the success rate did not necessarily plateau at a level below 100% (Pf = 1 in Model 1 was not rejected,
P = 0.65).



To evaluate the model fit, we divided experience into 30, 15 and 10 categories corresponding to
intervals with length 1, 2 and 3 and performed the likelihood ratio test for goodness-of-fit (to this end,
we compared the baseline Model 1 to a multinomial distribution; see the Appendix for more details).
The result wasP = 0.38, 0.42 and0.62 in each case, suggesting that the current generalized logistic
model fits well to the data.

Although our data involved 30 experiences or less for each trainee, we can compute how many
experiences are necessary to achieve a prescribed success rate if we believe that the model can be
extrapolated. To this end, we used the baseline Model 1 with final probabilityPf = 1 (which was not
rejected) and found the number of experiencesx that gave the prescribed success rate. The confidence
intervals were obtained by bootstrapping as before. The result wasx = 31.5 (95% CI: [27.6, 54.3]) for
90% success rate andx = 38.6 (95% CI: [31.2, 76.9]) for 95% success rate.

To evaluate the robustness of Model 1, we performed a number of robustness checks. Although the
learning curve in Figure 1 is S-shaped, Gallistelet al. [14] report that the negatively accelerated,
gradually increasing learning curve is an artifact of group averaging.To deal with the possibility that
individual learning curves deviate from the average learning curve, we estimated Model 1 by allowing
one of the parametersV , T , or both to vary across paramedics. However, the baseline Model 1 without
individual fixed effects was not rejected by the likelihood ratio test (P = 1.00 in all three cases). Thus
the learning curve for ETI did not appear to vary across individuals.

In Model 1 we assumed that experiencex enters linearly in the logistic function. To deal with potential
nonlinearity, we added a quadratic terma(V (x−T ))2 into the logistic function in Equation 1, wherea is
a coefficient. However, the likelihood ratio test failed to reject the baseline Model 1, which corresponds
to a = 0 (P = 0.86). Therefore, the baseline Model 1 seemed appropriate.

Complications

Table 2 shows the prevalence of complications possibly associated with ETI (some patients experienced
two or more). Except for three cases of dental damage, the complications were minor.a

Table 2 The prevalence of complications possibly associated
with laryngoscopic endotracheal intubation
Complication Number of cases Percentage in sample
Hoarseness 307 29%
Sore throat 189 18%
Lip laceration 15 1.4%
Oral bleeding 13 1.2%
Gingival bleeding 5 0.48%
Lip bleeding 5 0.48%
Pharyngeal bleeding 4 0.38%
Tongue laceration 4 0.38%
Dental damage 3 0.29%
Lip swelling 2 0.19%
Tongue bleeding 1 0.1%

Figure 2 plots the observed frequency of complications as well as the estimated probability. Table 3
presents the parameter estimates and confidence intervals. Overall the complication rate decreased from
53% to 31% after training on 30 patients. A patient’s age and sex and whethera nasogastric tube was
inserted were jointly insignificant (P = 0.21). More experience decreased the complications (P =
0.0055) and reduced the operation time and one or two failures in intubation-inducedcomplications



(P = 0.016, 0.0060, respectively), but there was no difference in complications between one and two
failures (P = 0.75). This was probably because if the trainee failed twice, the attending anesthesiologist
took over, whose laryngoscopic maneuver is minimally invasive.

Figure 2 Observed frequency of complications and estimated probability from Model 2. The
dashed curves indicate the 95% confidence interval.

Table 3 Estimation result of Model 2
Variable Estimate 95% CIa

Experience 0.031 [0.016, 0.047]
Operation time −0.0026 [−0.004, −0.0007]

One failure −0.73 [−1.2, −0.027]
Two failures −0.86 [−1.5, −0.02]

a95% confidence interval obtained by bootstrapping 1,000 times.

Discussion

Considering the limited opportunities for paramedics to practice ETI, the learning curve in Figure 1
suggests that requiring 30 live experiences seems to be reasonable since after 30 live experiences the
success rate was 87% (95% CI: 82 to 94%). However, whether paramedics should be trained in ETI in
the first place or whether paramedics should perform pre-hospital ETIis another issue. Although there is
some evidence that endotracheal intubation in the field by paramedics improves survival and functional
outcome in patients with head injury [1,6], other studies report negative results [2-5]. A more detailed
and rigorous evaluation of the benefit of pre-hospital ETI is desirable.In that case it will be important
to control for the skill level of paramedics participating in the study, since wefound that there is no
significant learning effect up to 13 live experiences.

The National Standard Paramedic Curriculum in the US recommends that paramedic students perform
at least five live endotracheal intubations [10], but the learning curvein Figure 1 suggests that five
experiences are insufficient since we found that there is no significantlearning up to 13 experiences and
learning is fastest at around 19 experiences. Since the simulation of ETI with a mannequin is reported to
be effective [15], trainees with limited training opportunities (especially paramedics) should thoroughly
practice with mannequins before proceeding to live ETI to get the most out of those opportunities.

Although complications associated with ETI are well known [16,17], there are hardly any reports on
the dependence of the complication rate on the experience of the performer. According to Figure 2
the frequency is quite high among novices, but quickly diminishes with acquired experience. The vast
majority of complications are minor, among which hoarseness and sore throatare the most common.
Not all of these cases were caused by intubation per se, since according to Conwayet al. [18] sore
throat occurs in about 10% of all post-operative patients (excluding those who underwent pharyngeal
and laryngeal operations) who were not intubated. However, the curve in Figure 2 does provide an upper
bound (conservative estimate) of complications caused by intubation. Table4 summarizes the baseline
and final probabilities (probabilities before and after training) and the threshold number of experiences
for the improvement of performance.

The learning curve for anesthetic procedures has been documented bya number of researchers using
simple visualization [19], the cusum method [7,8,20,21] and logistic regression[9-11], among others.
Simple visualization such as the observed frequency in Figures 1 and 2 is always helpful to avoid
specifying a highly inappropriate model. Without visualization we would not have modeled the initial
and final success rate as in Model 1. However, currently there is no universally accepted method for



Table 4 Summary
ETI success Complication

Baseline probability (before training) 71% 53%
Final probability (after training) 87% 31%
Threshold for improvement 13 0

modeling the learning curve (see [22,23] for systematic reviews). Statisticalmethods for modeling the
learning curve ideally should aim to estimate three parameters: rate of learning, baseline (starting) skill
level and final skill level (asymptote) [23]. Our proposed Model 1, ofcourse, passes these criteria.

The cusum method [24], despite its wide use, is problematic for modeling the learning curve. First, the
cusum method was originally developed for quality control to detect a process out of control. Since
by design the cusum method can only be applied to a process with a linear trend, it might be useful
for detecting the emergence of a learning effect (or detecting a trainee who is less proficient) but is not
suitable for modeling the entire learning curve where the success rate changes nonlinearly over time.
Second, explanatory variables other than time cannot be included in the cusum method. Third, the
cusum method is unable to estimate the rate of learning, the baseline skill level orthe final skill level.

The generalized logistic model we applied to construct the learning curve is flexible enough to fit the data
well but specialized enough to be able to estimate the parameter of interest. We hope that researchers
interested in the learning curve will broaden their analytical tools.

Limitations

This study has a number of limitations. First, because the study was carried out at a single institution,
the particular learning curve we obtained is strongly influenced by the teaching quality of this particular
institution. Second, in our study we included only healthy surgical patients withno sign of an obviously
difficult airway. Thus it is unclear whether our results will remain valid for the whole population,
although our learning curve for ETI can be interpreted as the upper bound (optimistic estimate) of the
true learning curve with the general population. Third, as the paramedics were trained only up to 30
experiences, the extrapolation of the learning curve beyond 30 cases should be taken with caution.
Finally, and perhaps most importantly, the outcome of this study (success/failure of intubation under
muscle relaxation in the operating room) is necessarily a short-term goal. Thelong-term goal is whether
paramedic intubation is beneficial to actual emergency patients, but our study does not address this
question. However, our study does point out the importance of controllingthe skill level of paramedics
when evaluating the benefit of paramedic pre-hospital intubation.

Conclusions

Any training program should be evaluated for efficacy. We constructedthe learning curve for paramedic
intubation and found that 30 live experiences of laryngoscopic endotracheal intubation seems to be
sufficient for obtaining a 90% success rate in an operating room, but there seems to be little benefit with
fewer than 13 experiences. The frequency of complications remains at ahigh level even after training. It
is desirable to conduct a more detailed and rigorous assessment of the benefit of pre-hospital intubation
that controls for the skill level of paramedics.

Endnotes

aAn anonymous reviewer suggested reporting the baseline complications of the anesthesiologists that
usually perform intubation at this institution for comparison to the paramedics. Unfortunately, no data
were available since minor complications are often left unreported by anesthesiologists.
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Appendix

Generalized logistic model

Suppose an outcomey is binary, sayy = 0, 1 or ‘success’ and ‘failure’, and we are interested in the
relation between some explanatory variablesx and the probability of the outcome,Pr(y = 1|x). A
typical way to model this situation is the linear logistic model:

Pr(y = 1|x) =
1

1 + exp(−β′
x)

, (3)

whereβ is the vector of coefficients of the regressors. The simple logistic Model 3 may be useful most
of the time, but it has the disadvantage that the initial and final probability of ‘success’ is necessarily
0 and 1. To see this, suppose that the regressors include time and let time be very small or very large.
Then the right-hand side of 3 tends to 0 or 1. For this reason, we use the more general model:

Pr(y = 1|x) = Pi +
Pf − Pi

1 + exp(−β′
x)

, (4)

wherePi andPf are the initial and final probabilities of ‘success’. Model 4 includes the simple logistic
Model 3 by settingPi = 0 andPf = 1, which Mulcasteret al. [9] use to model successful ETI.

Estimation

Because Model 4 is fully parametric, the most natural way to estimate it is by Maximum likelihood. Let
(yn,xn)

N
n=1

be the data. Then the log-likelihood function is given by:

logL(Pi, Pf ,β) =
N
∑

n=1

[

yn log

(

Pi +
Pf − Pi

1 + exp(−β′
xn)

)

+(1− yn) log

(

1− Pi −
Pf − Pi

1 + exp(−β′
xn)

)]

. (5)

The maximum likelihood estimator(P̂i, P̂f , β̂) can be obtained by maximizing the log-likelihood
function 5 subject to0 ≤ Pi, Pf ≤ 1 using optimization routines. For instance, in this paper we use the
fminsearch command in Matlab v8.0.0 (The MathWorks, Inc., Natick, MA, USA).



Confidence intervals

Under general conditions the maximum likelihood estimator is consistent and asymptotically normal.
Therefore in large samples the standard errors and confidence intervals of parameters can be obtained
using the asymptotic variance. This approach has the disadvantage that theapproximation may not be
good in small samples and we need to compute higher-order derivatives ofthe log-likelihood function.
An alternative is to use the bootstrap [12]. For each bootstrap repetitionb = 1, 2, . . . , B (say
B = 1, 000), we construct a bootstrap sample(ybn,x

b
n)

N
n=1

by resampling (with replacement) from the
original sample(yn,xn)

N
n=1

with probability1/N for each observation. Then we estimate the model
by maximum likelihood using each bootstrap sample and obtain the100(1 − α)% confidence interval
of any parameter of interest by reporting theα/2 and 1 − α/2 quantiles of the bootstrap estimates
corresponding tob = 1, 2, . . . , B. In this paper we obtain the 95% confidence intervals using the
bootci command in Matlab.

Model selection and goodness-of-fit

Model 4 actually contains many models, selected by choosing a different set of explanatory variablesx
or restricting the initial and final probabilitiesPi andPf . How should we choose from different models?
If one model is nested within another (that is, one model is a special case ofanother), we can use the
likelihood ratio test [13]. Suppose there are two models, 1 and 2, where Model 1 is a special case of
Model 2. LetL1 andL2 be the likelihood of each model obtained by maximum likelihood estimation.
Then the logarithm of the likelihood ratio statistic2(logL2 − logL1) is asymptotically chi-squared
distributed with degrees of freedomk2 − k1, wherek1 andk2 are the number of parameters in Models
1 and 2. This is the likelihood ratio test. To compare models that are not necessarily nested, we can use
either the Akaike Information Criterion [25] or the Bayesian Information Criterion [26], but for the data
used in this paper the likelihood ratio test suffices.

To test the model fit, suppose that the value of the explanatory variablesx falls in one ofJ categories.
Then Model 4 is a special case of the model in which the outcomey comes from a binomial distribution
with success ratepj , wherej = 1, 2, . . . , J . Thus evaluating the model fit reduces to the comparison
between two nested models, hence we can apply the likelihood ratio test. More precisely, letNj be the
number of observations in categoryj, of which there arenj ‘successes’. Then the maximum likelihood
estimate of the binomial model iŝpj = nj/Nj , with log-likelihood:

J
∑

j=1

[nj log p̂j + (Nj − nj) log(1− p̂j)]. (6)

On the other hand, the fitted probability of ‘success’ in categoryj using Model 4 is given by:

q̂j =
1

Nj

∑

xn∈j

[

P̂i +
P̂f − P̂i

1 + exp(−β̂
′

xn)

]

.

Then the log-likelihood of Model 4 withJ categories is given by Equation 6 witĥpj replaced bŷqj .
Having obtained two log-likelihoods, we can perform the likelihood ratio test. For more information see
Chapter 5 of Hosmer and Lemeshow [27].
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